What do they look like? ……..
|
||||||
|
|
|
|
|
|
|
Photo: L. Falk
|
||||||
|
||||||
|
||||||
If the polymer chain is long, its size can be described by simple proportion ratios called scaling laws: When the number of monomers N is doubled, the size is increased by the scaling factor 2v. The exponent v is universal in the sense that it is the same for all polymer chains although it depends on the polymer concentration. |
||||||
The snake-like (reptile-like) motion of an entangled polymer chain is explained by imaging that it is confined to a “tube” formed by adjacent chains. The reptation time t, the time needed for the chain to completely move out of the tube, can be obtained from simple scaling arguments. The reptation model leads to a smaller exponent (v= 3) than the measured one (v= 3.3) but it can nevertheless explain a number of phenomena and is very powerful in its simplicity. |
||||||
|
|
|||||
Photo: L. Falk
|
Photo: L. Falk |
|||||
|
||||||
Nobel Prizes and laureates
Six prizes were awarded for achievements that have conferred the greatest benefit to humankind. The 12 laureates' work and discoveries range from proteins' structures and machine learning to fighting for a world free of nuclear weapons.
See them all presented here.