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Max Planck: October 19, 1900

Interpolation formula for thermal radiation
distribution — a brilliant success

December 14, 1900:

Model: Ensemble of 1-dimensional charged
harmonic oscillators exchanging energy with
radiation field

— reached “correct” equilibrium distribution
only if oscillator energy states were discrete

E =nhv

n







Albert Einstein: 1905

Found two suggestions that light Is quantized

- Structure of Planck’s entropy for high frequencies
- The photoelectric effect

He noted in later studies —

.

C
- New Derivation of Planck’s law (1916)

- Momentum of Quantum (1909)

A = Spontaneous radiation probability
B = Induced radiation rate



Compton effect: 1923

Completed picture of particle-like behavior
of quanta - soon known as photons (1926)

L. de Broglie, W. Heisenberg, E. Schrodinger:
1924-26

Quanti chanics - told all about atoms

But radiation theory was still semi-classical
until P. Dirac devised

Quantum Electrodynamics in 1927



Split real field into two complex conjugate terms

E=E"+E"
EC =( E(”)*

. ng - _. t
E(+) contains only positive frequencies ~ € o

E) contains only negative frequencies ~ '

_|_
E(_) physically equivalent (classically)



Define correlation function
G\ (ntnt,) = <E(_) (’ﬁtl)EH) (12, )
Young's 2-pinhole experiment measures:

G(r tirty) + GO(ntnt) + GO tnt) + GOt t)

))>>>%::::::;;7’

Coherence maximizes fringe contrast




Letx = (r,t)
Schwarz Inequa

‘G(l) (x,X,)

ity:
2
<G (x,x)G" (x,x,)

Optical coherence:

2
‘G(l) (x1x2)‘ =GV (x,%)G" (x,x,)

Sufficient condition: G\ factorizes

ie. GO (x,x,) =€ "(x)) &€ (x,)

~ also necessary:
Titulaer & G. Phys. Rev. 140 (1965), 145 (1966)



Quantum Theory:

E () Are operators on quantum state vectors

E(+)(rt) Annihilation operator, lowers 7
‘n) — -1)
E) (rt) Creation operator, raises n
‘n) > |n +1)

Lowering n stops with n =0, vac. state

E(”(rt)‘ vac.> =(



Ideal photon counter:

- point-like, uniform sensitivity
Transition Amplitude <f‘E(+) (rt)‘i>

- Square, sum over ‘f>

- Use completeness of ‘f>
Z‘f><f‘=l (unit op.)
A

Total transition probability ~
Z\ fIEC (r)]i \ =N GIEC ()| U SIES ()| 1)
= (l IE( (r)ED (1) i)



Initial states ‘z> random

Take ensemble average over ‘ i>

Density Operator: o ={[i )i [} 4,040

~ Then averaged counting probability is

(i | EOGDEN (1) | i)} 4, = Trace{ pEOGHEN(rr)}



To discuss coherence we define
G (1t raty) =Trace{ pE(r t))EM(ryt,)}
- obey same Schwarz Inequality as classical G

Upper bound attained likewise by factorization,
G (118, raty) = E (1)) E (ryty)

. 1 : Vel ralt)
Statistically steady fields: G =G/ (¢, —t,)
- If optically coherent,

GV (-1 =E *(ﬁ) E (1)
The only possibility is: £ (¢) ~ e™ for m >0



R. Hanbury Brown and R. Q. Twiss
Intensity interferometry

Two square-law detectors




Ordinary (Amplitude) interferometry measures

GO (rtr't')y = (EV () E© (r't'))

Ave.

Intensity interferometry measures

GO (rtr't'r't'rt) = <E DEOHEC (FHE®W (F'tHEY (rt)>

The two photon dilemmal!
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Some time before the discovery of quantum mechanics people
realized that the connexion between light waves and photons must
be of a statistical character. What they did not clearly realize. how-
ever, was that the wave function gives information about the proba-
bility of one photon being in & particular place and not the probable
number of photons in that place. The importance of the distinction
can be made clear in the following way. Buppose we have a beam
of light consisting of a large number of photons split up into two com-
ponents of equal intensity. On the assumption that the intensity of
& beam is connected with the probable number of photons in it, we
should have half the total number of photons going into each com-
ponent. If the two components are now made to interfere, we should
require & photon in one component to be able to interfere with one in
the other. Sometimes these two photons would have to annihilate one
snother and other times they would have to produce four photons.
This would contradict the conservation of energy. The new taeory,
which connects the wave function with probabilities for one photon,
gets over the difficulty by making each photon go partly into each of
the two components, Each photon then interferes only with itself.
Interference between two different photons never ocours.

The association of particles with waves discussed above is not
restricted to the case of light, but is, according to modern thecry,
of universal applicability. All kinds of particles are associated with
waves in this way and conversely all wave motion is associated with




Hanbury Brown and Twiss ‘56

&)

MULT.

|
Pound and Rebka ‘57

Coincidence rate

Delay time




Define higher order coherence (e.g. second order)

GP(xy, X5, x3, X4) = (EV(xp) EV(x,) EO(x3) B (xy))
=£(x)) E(x,) E(x3) E(xy)

- Joint count rate factorizes

2 2
G®(x1,%2,%0,%1) =€) |E(x,)
- Wipes out HB-T correlation

nt order coherence, n - oo



What field states factorize all G ?

Recall normal ordering
- Sufficient to have: EN(f) | Y= ()| )

~ defines coherent states

Convenient basis for averaging normally
ordered products

All G™ can factorize = Full coherence



Any classical (i.e., predetermined) current j

radiates coherent states
~ R.G. Phys. Rev. 84, '51

What is current j for a laser?

Strong oscillating polarization current j = Zz
t

Quantum Optics = Photon Statistics



Quantum Field Theory — for bosons

Field oscillation modes <> harmonic oscillators
For harmonic oscillator:

a lowers excitation ¢ \ ny= \ﬁq \ n-1)
T

a 'raises excitation g7 \ ny = \//n + 1 ‘n + 1)

T T

aa' —a'a =1



Special states: a‘a> = a‘a>

a = any complex number

o) = “”z

ol

al’
P(n)=——e "' , Poisson distribution

n!
ny= | al?

~ single mode coherent states



Superposition of coherent excitations:
Source #1 > |«,)
Source #2 > |a,)

1 k ES
—(oy a,—ayay)

Sources #1 and #2 > ¢2

o, +a,)

Combined density operator: ,0=\0!1 +0!2><051 +sz\

With  sources p=|a)Xa| , « =Zocj
=1



For n—>w, aj’s random

Sum & has a random-walk probability
distribution — Gaussian

1"
Pla)= Iod?)

)

But <\a\2>AV =(n), mean quantum number




e.g. Gaussian distribution of amplitudes {« |
Single-mode density operator:

N ERO)
Pasane = | P a){ald’e

RS RORIY
P "1+ () Zu <>n>] N




Two-fold joint count rate:

G (x,x,2,%, )= GV (x,x, )GV (x,x, )+ GV (x,x, )G (x,x,)

N /
Y

HB-T Effect

Note for xzéx]:

G(z)(xl X)X Xp) =2 [G(l)(xl X)] 2



If the density operator for a single mode can
be written as:

0= jP(a)‘aXa‘dzg

Then (at"a™) = Tr (pata™) = [P(a)*" a"d*

Operator averages become integrals
P(a) = quasi-probability density

Scheme works well for pseudo-classical fields,
but is not applicable to some classes of fields
e.g. "squeezed” fields, (no P-function exists).



One mode excitation:
P (|a])

laser
/

chaotic
AN
|

Photocount distributions ( w = average count rate)

(wr)”

/|

S p(n) /Coherent

’("W ' /Chaotic

(1+wp)"" ]

Coherent state: p(n)=

Chaotic state: p(n)=




Distribution of time intervals until first count:

Coherent: P(t) =we "

W
(1+ wt)’

Given count at 7 = 0, distribution of intervals
until next count:

Coherent: P(O1¢)=we™ 2* /‘P(OV)

Chaotic: P(1) =

2w N PO

Chaotic: P(Olr) =
O17) (1+ wt)’




Quasi-probability representations for
quantum state p

Define characteristic functions: o
1 (A,5)=Trace{pe™ A }eal‘ !

Family of quasi-probability densities:
W(a,s) = % _[ e Ay (A,8)d* A

s=1 W(a,])=P(a) P-rep.
s=0 W(@0)=w(x) Wigner fn.
s =-1 W(a,—1)=l<a\qa> Q-rep.

7T



Later Developments:

Measurements of photocount distributions
~ Arecchi, Pike, Bertolotti...
Photon anti-correlations ~ Kimble, Mandel
Quantum amplifiers
Detailed laser theory ~ Scully, Haken, Lax
Parametric down-conversion — entangled photon pairs
Application to other bosons

* bosonic atoms (BEC)

 H.E. pion showers

« HB-T correlations for He* atoms
Statistics of Fermion fields ~ with K.E. Cahill



-

3

o ---:'L"'_'::'“I ¥ v 4
S .

- s

o
Wl

—




	100 Years of Light Quanta
	Quantum Field Theory – for bosons
	Special states:

