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Max Planck: October 19, 1900

Interpolation formula for thermal radiation 
distribution – a brilliant success

December 14, 1900:

Model: Ensemble of 1-dimensional charged 
harmonic oscillators exchanging energy with 
radiation field

– reached “correct” equilibrium distribution 
only if oscillator energy states were discrete
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Albert Einstein: 1905

Found two suggestions that light is quantized
- Structure of Planck’s entropy for high frequencies
- The photoelectric effect
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He noted in later studies –

- Momentum of Quantum (1909)

- New Derivation of Planck’s law (1916)
A = Spontaneous radiation probability
B = Induced radiation rate



Compton effect: 1923

Completed picture of particle-like behavior 
of quanta - soon known as photons (1926)

L. de Broglie, W. Heisenberg, E. Schrödinger:
1924-26

- told all about atoms

But radiation theory was still semi-classical
until P. Dirac devised
Quantum Electrodynamics in 1927



Split real field into two complex conjugate terms

contains only positive frequencies

contains only negative frequencies

physically equivalent (classically)
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Define correlation function
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Young’s 2-pinhole experiment measures:

G(1)(r1t1r1t1) + G(1)(r2t2r2t2) + G(1)(r1t1r2t2) + G(1)(r2t2r1t1)

Coherence maximizes fringe contrast



Let x = (r,t)
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Schwarz Inequality:

Optical coherence:
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Sufficient condition: G(1) factorizes

G(1) (x1x2) = E *(x1) E (x2)i.e.
~ also necessary:

Titulaer & G. Phys. Rev. 140 (1965), 145 (1966)



Quantum Theory:

)(±E Are operators on quantum state vectors

Lowering n stops with n = 0, vac. state
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Creation operator, raises n

Annihilation operator, lowers n
⎥n〉 → ⎥n -1〉

⎥n〉 → ⎥n +1〉



Ideal photon counter:
- point-like, uniform sensitivity
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Transition Amplitude

- Square, sum over

- Use completeness of

Total transition probability ~

(unit op.)

= 〈i⎥E(-)(rt)E(+) (rt)⎥i〉

(rt)
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Initial states         random

Take ensemble average over

ρ ={|i 〉〈i |}AverageDensity Operator:

~ Then averaged counting probability is

{〈i | E(-)(rt)E(+)(rt) | i〉}Av. = Trace{ρE(-)(rt)E(+)(rt)}



To discuss coherence we define

G(1)(r1t1r2t2) =Trace{ρE(-)(r1t1)E(+)(r2t2)}
)1(G- obey same Schwarz Inequality as classical

Upper bound attained likewise by factorization,

G(1) (r1t1 r2t2) = E *(r1t1) E (r2t2)

Statistically steady fields: )( 21
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- If optically coherent,
G(1) (t1- t2) = E *(t1) E (t2)

E (t) ~ e-iωt   for ω > 0The only possibility is:



D1 M D2

Signal

R. Hanbury Brown and R. Q. Twiss
Intensity interferometry

Two square-law detectors



Ordinary (Amplitude) interferometry measures

.
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Intensity interferometry measures
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The two photon dilemma!





Hanbury Brown and Twiss ‘56

D2

D1

MULT.

Pound and Rebka ‘57

Delay time

Coincidence rate
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Define higher order coherence (e.g. second order)

G(2)(x1, x2, x3, x4) = 〈E(-)(x1) E(-)(x2) E(+)(x3) E(+)(x4)〉
= E*(x1) E*(x2) E (x3) E (x4)

Joint count rate factorizes

G(2)(x1,x2,x2,x1 ) = E(x1)
2

E(x2)
2

Wipes out HB-T correlation

nth order coherence, n ∞



Recall normal ordering
What field states factorize all G(n) ?

- Sufficient to have: E(+)(rt)⏐ 〉 = E (rt)⏐ 〉

~ defines coherent states
Convenient basis for averaging normally 
ordered products

All G(n) can factorize Full coherence



Any classical (i.e., predetermined) current j
radiates coherent states

Strong oscillating polarization current 
t
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What is current j for a laser?

~ R.G. Phys. Rev. 84, ’51
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Quantum Optics = Photon Statistics



Quantum Field Theory – for bosons

Field oscillation modes ↔ harmonic oscillators
For harmonic oscillator:

a lowers excitation

1†† =− aaaa

†a raises excitation

a⏐n〉 = √n⏐n - 1〉

a†⏐n〉 = √n + 1⏐n + 1〉



ααα =aSpecial states:

α = any complex number
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, Poisson distribution

〈n〉 = ⏐α⏐2

~ single mode coherent states



Superposition of coherent excitations:

Source #1 

Source #2 

α1

α2

Sources #1 and #2 e
1
2

(α1
*α2 −α1α2

* )
α1 +α2

Combined density operator: ρ = α1 +α2 α1 +α2

With n sources ρ = α α      ,      α = α j
j=1

n

∑  



For n ∞, α j

P(α) =
1

π α 2
e

− α 2

α 2

’s random

Sum α has a random-walk probability
distribution – Gaussian

But α 2

AV .
= n , mean quantum number



e.g. Gaussian distribution of amplitudes {αn}
Single-mode density operator:

ρchaotic =
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Two-fold joint count rate:

G(2) x1x2x2x1( )= G(1) x1x1( )G(1) x2x2( )+ G(1) x1x2( )G(1) x2x1( )

HB-T Effect

Note for x2 x1:

G(2)(x1 x1 x1 x1) = 2 [G(1)(x1 x1)] 2



If the density operator for a single mode can 
be written as:
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Then

Operator averages become integrals
P(α) = quasi-probability density

〈a†nam〉 = Tr (ρa†am) = ∫P(α)α*n αmd2 α

Scheme works well for pseudo-classical fields,
but is not applicable to some classes of fields
e.g. “squeezed” fields, (no P-function exists).
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One mode excitation:

p(n) =
(wt)n

n!
e−wt

Chaotic state: p(n) =
(wt)n

(1+wt)n+1

Coherent state:

Photocount distributions ( w = average count rate)

laser

chaotic

P (|α|) 

coherent

chaotic

p(n)

n



Distribution of time intervals until first count:

P(t) = we−wtCoherent:

P(t) =
w

(1+ wt)2Chaotic:

Given count at t = 0, distribution of intervals 
until next count:

P(0 | t) = we−wt

P(0 | t) =
2w

(1+ wt)3Chaotic:

Coherent:

t
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2w P(0|t)

P(t)

t
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Quasi-probability representations for 
quantum state ρ

Define characteristic functions:

x λ,s( )= Trace{ρeλa †−λa}e
s

2
λ 2

χ

s = 1 P-rep.
s = 0 Wigner fn.
s = -1 Q-rep.

Family of quasi-probability densities:

W (α,s) =
1

π
eαλ* −α*λx(λ,s)d2λ∫

W(α,1) = P(α) 

W(α,0) = w(α)

W(α,−1) =
1

π
α ρα

eαλ*- α*λ χ(λ,s)d2λ



Later Developments:

• Measurements of photocount distributions
~ Arecchi, Pike, Bertolotti…

• Photon anti-correlations ~ Kimble, Mandel
• Quantum amplifiers
• Detailed laser theory ~ Scully, Haken, Lax
• Parametric down-conversion – entangled photon pairs
• Application to other bosons

• bosonic atoms (BEC)
• H.E. pion showers
• HB-T correlations for He* atoms

• Statistics of Fermion fields ~ with K.E. Cahill
• • • •
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