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The concept of a crystal is that of a solid body in which the atomic or molecular
units are so arranged as to form an array having three dimensional periodicity.
Because of the periodicity, it is possible to describe the arrangements of the
atomic composition by means of Fourier series. The type of Fourier series that
is used in crystal structure analysis represents the electron density distribution
in a crystal. This is indeed equivalent to representing the structure of a crystal
since the atomic locations are represented by the regions of highest electron
density in the electron distributions.

The experimental technique used for examining the structure of crystals is
called diffraction. In a diffraction experiment, rays are made to impinge on a
crystalline substance of interest and, given the proper geometric conditions, the
rays are scattered as if they were bouncing off large numbers of different planes
imagined to be cutting through the crystal. The collected intensities of scatter-
ing (often 5000-10000 in number) are called a scattering pattern or diffraction
pattern and comprise the experimental data from which the structure of the
crystal of interest is to be elucidated. The most commonly used rays are
Roentgen rays or X-rays, as they are usually called. Other rays, composed of
neutrons or electrons, also have their purposes.

It is possible to obtain an insight into the character and sense of a diffraction
experiment by imagining some experimental circumstances on the macroscopic
scale. Let us suppose that we would like to probe the shape of some large
object, hidden from view, by using balls that are hurled in a precise way at the
object of interest and interact with the surface with essentially perfect restitu-
tion. Let us also suppose that it is possible to minimize and correct for the
gravitational effects on the impinging balls. We assume that we can observe the
results of the bouncing of the balls from the surface of the object. If a large area
were scanned perpendicular to the direction in which the balls were hurled and
each time the bouncing pattern were essentially parallel but in the opposite
direction to that of the impinging balls, we would conclude that the object had
a face with a high degree of flatness that was perpendicular to the direction of
the impinging balls. Evidently, by varying the orientation of an arbitrarily
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shaped object and observing the patterns of the bouncing balls or, equivalently,
the scattering pattern, knowledge of the shape of the object could be developed
in quite some detail. On the submicroscopic scale, the situation is somewhat
different. Crystals are quite porous to X-rays and the interactions between the
rays and the atomic composition of the crystal are different than that of a bail
bouncing off a surface such that, as noted, certain geometric conditions need to
be fulfilled before it appears that reflection of the rays has taken place. The
nature of the interactions is understood, however, and the relevance of the
comparison with the macroscopic thought experiment involving bouncing balls
maintains. In the case of X-rays and a crystal, the X-rays replace the bouncing
balls and the way the X-rays interact with electron density distributions within
the crystal gives rise to a scattering pattern unique to each crystalline sub-
stance. The problem that the analyst faces is to be able to take the diffraction
pattern and from it determine the atomic architecture of the crystal which
cannot be observed directly.

There is a special problem in taking the intensity information from a diffrac-
tion pattern and calculating from it the electron density distribution of a crystal
by use of the Fourier series. The coefficients in the Fourier series are, in general,
complex numbers. Only the magnitudes of the complex numbers appear to be
available from the measured intensities of scattering. The required phases of
the complex numbers seem to be lost in an ordinary X-ray diffraction experi-
ment. It was therefore generally thought that it was not possible to go directly
from a diffraction pattern to a determination of a crystal structure. The impasse
was overcome in a series of steps that involved recognition that the required
phase information was contained in the experimental intensity information, the
derivation of a foundation mathematics that displayed relationships between
phases and magnitudes and even among phases alone and, finally, the develop-
ment  of  pract ical  procedures for  s tructure determinat ion,  s t rategies  that
brought together in a more or less optimal fashion the mathematical relation-
ships with suitably adjusted and refined experimental data.

The results of structure determinations have been playing a valuable role in
a number of areas of scientific endeavor. Crystallization, for example, is a very
common phenomenon and many types of substances form crystals ranging
from metals and minerals to huge macromolecules such as viruses. Knowledge
of structure allows one to relate structure to function, i.e., understand physical,
chemical or biological properties and activities, provides the chemist with
useful information for syntheses, modifications and reaction mechanisms and
can also be used to identify very small quantities of scarce material. It often
provides the theoretical chemist with a starting point for his calculations.
Structural research provides a conceptual basis for many associated scientific
disciplines and it is the opportunity to interact with a variety of such disciplines
that has made structural research particularly appealing to me.

As this article proceeds, it will elaborate on a number of the items discussed
in this introductory part, describe some interesting applications and discuss
briefly some research paths and opportunities for the future.
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ELECTRON DENSITY DISTRIBUTION
The electron densi ty dis tr ibut ion,   is expressed in terms of the three-
dimensional Fourier series

where V is the volume of the unit cell of the crystal, the basic structural unit
from which, through three-dimensional periodicity, the crystal is formed. The
coefficients

are the crystal structure factors associated with the planes labeled with the
vectors h. The h have integer components, h, k, and 1, the Miller indices, whose
values are inversely proportional to the intercepts on the x, y and z axes,
respectively, of planes cutting through the crystal. The angle  is the phase
associated with Fh and r labels the position of any point in the unit cell. FhE is
the amplitude of the scattered wave associated with the plane labeled by h ,
where E i s  the electr ic  f ie ld vector  of  the incident  beam. The measured
intensities of X-ray scattering are proportional to |Fh|2. If the values of the 
were also obtained directly from experiment, structures could be immediately
calculated from (1). The seeming absence of this information gave rise to the
so-called “phase problem”.

where fjh represents the amplitude of scattering of the jth atom in the unit cell
and rj  is its position vector.

O V E R D E T E R M I N A C Y
A system of simultaneous equations is formed by the definition of the crystal
structure factors given by (3) since the values of the scattered intensities are
measured for a large number of h. The unknown quantities in (3) are the
p h a s e s   and the atomic positions rj. The known quant i t ies  are  the  |Fh|
obtained from the measured intensities and the fjh which differ little from the
theoretically calculated atomic scattering factors for free atoms. Since each
equation in (3) involves complex quantities, there are really two equations, one
for the real and one for the imaginary part. In order to determine the overdeter-
minacy, a comparison is made of the number of unknown quantities with the
number of independent data available. With the use of  radiation, the
overdeterminacy can be as great as a factor of about 50 for crystals that have a



center of symmetry and about 25 for those that do not. In practice, somewhat
fewer than the maximum available data are measured, but the overdetermin-
acy is still quite high.

SOME ATTEMPTS,  SOME SUCCESSES
There were some early attempts to obtain structural information or phase
information from the structure factor equations. Ott [1] made use of the
structure factor equations (3) to derive relationships among the structure
factors and atomic positions and he showed that in some simple cases atomic
coordinates could be obtained directly from the relationships. Banerjee [2]
devised a trial and error self-consistency routine based on Ott’s results for
finding the phases of structure factors that are centric and therefore with phases
that have values that are limited to zero or π. The number of trials increased
rapidly with complexity limiting applications to rather simple structures. Av-
rami [3] worked with equations that relate intensities to interatomic vectors
(4). Solutions to these equations were given in terms of the roots of a polyno-
minal equation whose degree increases rapidly as the complexity of the crystal
increases. In all these approaches, the increase in computational demands with
complexity, sensitivity to experimental errors, and inherent ambiguities in the
results prevented their application to any but the simplest structures. Even
though present day computational facility is enormously greater than when this
work was done originally, the limitations cannot be suitably overcome even
now.

A significant advance in the attempt to obtain structural information from
the measured intensities was made in 1934 by A. L. Patterson. He developed a
Fourier series which has as its coefficients the magnitude of the square of the
structure factors rather than the structure factors themselves. The phases may
be eliminated from (3) by multiplying by the corresponding complex conju-
gates to obtain

(4)

The Fourier transform of (4) is known as the Patterson function [4,5]

The maxima of a Patterson function represent the interatomic vectors in a
structure. Evidently the values of the coefficients are directly obtainable from
the measured intensities of scattering. This function has been very useful in
locating the heavier atoms in a structure, if they are not too numerous, since the
interatomic vectors associated with them would predominate in a map comput-
ed from (5) and the atomic positions for them could then be readily deduced.
The coordinates for the heavy atoms may be used with (3) to compute an initial
set of approximate phases. Depending upon the scattering power of the heavy
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atoms, such a computation may be suitable for structures containing up to a
few hundred atoms. There are numerous procedures for developing a complete
structure from the initial phase information obtained from the heavy atoms.
The use of the Patterson function with structures containing heavy atoms has
found widespread application and remains one of the major methods of crystal
structure determination.

The difficulty with using the Patterson function with experimental data in a
general way in the absence of heavy atoms arises from the lack of resolution
that occurs for the N(N-1) interatomic vectors as well as inaccuracies. The
Patterson function becomes somewhat accessible when it is used in combina-
tion with known atomic groupings [6-8].

The fact that the Patterson function could be used to solve simple structures
made a positive contribution to the background atmosphere in which progress
in phase determination was made. Once a structure was solved, it was possible
to use (3) to calculate values for the phases. In effect then, phase values were
determined from the measured intensities. In the case of the Patterson function,
this happened through the intermediary step of first determining the structure.
It was, however, conceivable that the process could be reversed, namely, to
obtain phase information directly from the intensities and from that compute
the structure by use of (1). This is indeed what happened. So far, except for
special cases involving heavy atoms, it has turned out to be easier to obtain
phase values directly from the measured intensities and then compute the
structure than to obtain the structure directly from the intensities without the
use of phases.

Relationships between phases and magnitudes that anticipated the later
developments were the inequalities of Harker and Kasper [9]. They derived a
number of inequalities by application of the Schwarz and Cauchy inequalities
to the structure factor equations (3) in the presence of crystallographic symme-
try.  The Harker-Kasper inequali t ies have provided valuable insights.  For
example, the simple inequality formulas can provide useful phase information
as shown by Kasper, Lucht and Harker [10] in their solution of the structure of
decaborane. In addition, work with the inequalities indicated that they may
have probabilistic characteristics. Gillis [11], for example, noted that the
implication of an inequality was probably correct even when the magnitudes of
the structure factors were too small to permit a definitive conclusion to be
drawn. Gillis speculated that the smallness of the structure factor magnitudes
may have been due to thermal effects and employed an appropriate function to
increase the values of the structure factor magnitudes so that the inequalities
could be applied. The probabilistic interpretation, however, remained a possi-
ble alternative, namely, that although an inequality does not quite determine
the value of a phase definitively, it still does so with a high probability that the
value is correct. This could be important because it would imply that the
inequalities have probabilistic implications that could extend their range of
usefulness.
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A C-F,

Fig. 2. The essentially non-negative radial distribution function (solid curve) for  comput-
ed from the experimental molecular intensity data extracted by use of a properly formed back-
ground intensity curve. The solid curve is a probability density that gives the probability of finding
interatomic distances in some distance interval along the horizontal axis. The dashed lines
represent the decomposition of the main peaks into their component individual interatomic
distances. The individual peaks have a definite width related to the internal vibrations in the
molecule.

NON-NEGATIVITY AND GENERAL INEQUALITIES
The initial motivation to investigate the mathematics of crystal structure
determination arose from experiences in the development of an analytical
procedure for obtaining accurate radial distribution functions for determining
the structures of gaseous molecules by electron diffraction. A problem arose,
namely, to find an accurate background intensity so that the molecular interfer-
ence intensity could be accurately extracted from the total intensity of scatter-
ing. The Fourier transform of the molecular intensity can be interpreted as
representing the probability of finding interatomic distances in a molecule.
Therefore, this transform must be non-negative and the non-negativity im-
posed a very useful constraint on the shape of the background intensity [12,13].
Figure 1 shows a radial distribution function for  [14] derived from
application of the non-negativity constraint and the component distances in the
molecule. The attendant accuracy of the result permitted not only equilibrium
interatomic distances to be determined but also estimates of the root-mean-
square amplitudes of vibration associated with the interatomic distances.

At about the time this work in gas electron diffraction was proceeding,
Herbert Hauptman joined our group at the Naval Research Laboratory and, in
view of the success of the non-negativity criterion, we decided to explore the
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possibility that this criterion might be useful in other areas of structural
research. This led us to investigate the determination of electron density
distributions around free atoms [15] which found a very tine application in the
determination of the electron distribution about argon by Bartell and Brock-
way [16].

We were also quite interested in seeing what the consequences of the applica-
tion of non-negativity would be for crystal structure analysis since the electron
density distribution defined in (1) is constrained not to be negative. This
brought in the work of Toeplitz [17] early in this century on non-negative
Fourier series and subsequent development by others. We discussed the theory
in three-dimensions and wrote it in a form that would have particular relevance
to crystallographic data.
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Fig. 2. The determinantal inequalities can be written in the general form  r. This means
that Fh is bounded by a circle of radius r in the complex plane centered at 6. If |Fh| is known, then Fh

is confined to a line within the circle.

One evident conclusion from (9) is

This states that for large structure factor magnitudes, the value of  may be
defined in terms of the values of two other phases. This may also be seen from a
construction based on (8), Fig. 2, in which  and r is equal to the
right side of (8). The form for (8) is then

(11)

It can be readily shown [18] that all determinants (6) can be written in the
form (11). As the order of the determinants increases, there is a tendency for r
to decrease in size, making the determination of  rather definitive.

Formula (10) has found wide application beyond the range of usefulness of
(8). This is because of the probabilistic characteristics of the inequalities [19]
which imply that  the most  l ikely value of   is that of  and the
probability decreases the farther the value of  deviates from that of 
Therefore, even when the radius, r, of the bounding circle is large, the most
likely value of  is 

The structure factors in (6) can be replaced by quasi-normalized structure
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factors,  that represent point atoms (to an approximation when atoms of
unequal atomic number are present) rather than atoms with electron distribu-
tions,

Structure factors representing point atoms are the type of quantity normally
used in phase-determining procedures. Instead of (9), we have

For centrosymmetric crystals, we have

where s means "sign of" a plus sign implying that the phase is equal to zero and
a minus sign that it is equal to π. A one-term tangent formula also follows from
(13),

(15)

The tangent formula composed of the sum of terms over k both in the numera-.
tor and the denominator is another formula that has played a major role in the
practical applications of the theory for structure determination.

After the set of determinantal inequalities (6) were obtained on the basis of
the non-negativity of the electron density distribution in a crystal, it was of
interest to investigate their relationship to the inequalities derived by Harker
and Kasper [10] from use of the Schwarz and Cauchy inequalities. It was
shown [18] that, when the appropriate symmetry was introduced into the third
order determinantal inequality by means of certain relationships among the
structure factors, the Harker-Kasper inequalities could be derived. Examina-
tion of the derivation of the Harker-Kasper inequalities shows, as would be
expected, that the non-negativity of the electron density distribution is a
requirement for their validity.

The variety of phase determining formulas contained within the determinan-
tal inequalities (6) have their counterpart in probability theory, i.e., similar
formulas can be derived with the use of probability theory. Their virtue is that
measures of reliability can be attached to them and the judicious use of such
measures was an important feature in bridging the gap between mathematical
theory and practical application.

It had been pointed out that the determinants have inherent probabilistic
characteristics [19] that can, in fact, be directly read out from the form (11).
This  was not, however, how the first probability formulas were derived. The
pursuit of such formulas was motivated by the expectation that the usefulness
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of the formulas from the inequalities could be extended because of the great
overdeterminancy of the structure problem, the expectation that the points
within the bounding circle of radius r and center δ, Fig. 2, would not be
uniformly probable and the experience of Gillis [11] with structure factor
magnitudes that were too small to elicit definitive conclusions from the inequal-
ities but which, when made larger artificially, led to correct conclusions.

In order to characterize the probabilistic aspects of this subject, we initially
decided to develop a facility in the use of the random walk [20], but subse-
quently changed to the joint probability distribution [21,22] which culminated
in a monograph [23] that contained, for the first time, a set of probabilistic
formulas and measures for attacking the phase problem, in this case limited to
crystals that have a center of symmetry. It was in the monograph [23] also that
the theory of invariants and semi-invariants was introduced for the purpose of
solving the problem concerning how many and what types of phases to specify
to fix the origin in a crystal and what values are permitted. The practical
aspects of solving crystals that lack a center of symmetry were developed later
on and it was not until 1964 that the structure of the first crystal lacking a
center of symmetry was solved [24] by the “direct method” for obtaining phase
information by direct use of the measured intensities of scattering. It is interest-
ing that fairly recent developments in the mathematics of the random walk
have made this technique quite accurate, stimulating revived interest in its
application to the probabilistic aspects of phase determining formulas [25].

F O R M U L A S  F O R  P H A S E  D E T E R M I N A T I O N
The main formulas for phase determination are now listed. They will suffice to
characterize the nature of the phase determining procedures. There are addi-
tional formulas that play a variety of helpful roles and may be found in the
referenced literature of this article.

Centrosymmetric crystals
The  formula is [23],

where s means the "sign of" and k r, represents restricted values of k for which
the corresponding |Ek| and |Eh-k|( values are large. A plus sign refers to a phase
of zero and a minus sign to a phase of π, the only two values possible for a
centrosymmetric crystal when an origin in the crystal is properly chosen. The
quantities, E, are normalized structure factors which arise as appropriate
quanti t ies  to  use with probabil i ty  theory and are the same as  the quasi-
normalized structure factors, ε, except for a reweighting [26] of certain subsets
of the E. The treatment of the intensity data to obtain normalized structure
factors [27] arises from the work of Wilson’ [28,29], the earliest application of
probability methods to crystal structure analysis. Formula (16) is the probabil-
ity equivalent of the set of inequalities (8) as k varies over the set k r.  The
appropriate probability function, P+(h), which represents the probability that
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the sign of Eh be positive, was given in the monograph [23]. It is conveniently
applied in the form derived by use of the central limit theorem by Woolfson
[30] and Cochran and Woolfson [31]

where

(18)

and Zj is the atomic number of the jth atom in the unit cell containing N atoms.

Noncentrosymmetric crystals
The sum of angles and tangent formulas are, respectively,

(20)

Formulas (19) and (20) are comparable to (10) and (15), respectively, and
result from combining a number of individual terms as k varies over some
chosen set. An appropriate measure of the reliability of (19) and (20) is a
variance, V, [32] given by

(21)

where In is a Bessel function of imaginary argument [33]

(22)

(23)

Expression (21) gives the variance of  as determined from a given set of  +
 This variance formula has its origin in a probabilility distribution (in

somewhat different notation) of Cochran [34] for  given a particular  +
 and the accompanying |E| values. The tangent formula (20) can be derived
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in many ways. It has arisen, for example, in theoretical investigations of
noncentrosymmetric space groups by use of the joint probability distribution
[35] and can be shown to occur [32] in a generalization of the Cochran formula
[34] for a particular  to take into consideration a set consisting of several or

 +  h h rat er t an just one [32,34]. The average in (19) is to be taken
in the context of maximum clustering i.e. a minimum deviation of the contribu-
tions of individual addition pairs,  from the average value. All φ a r e
kept in a range  and maximum clustering requires the addition of 0,
2π, or −2π to each addition pair. A practical method for effecting appropriate
clustering has been described [32].

P R A C T I C A L  P H A S E  D E T E R M I N A T I O N
In this part, the various aspects of practical phase determination will be
outlined in terms of the first procedure that had broad practical applications to
both centrosymmetric and noncentrosymmetric crystals, the symbolic addition
procedure [24,32,36,37]. It arose mainly from the efforts of my wife, Dr.
Isabella Karle, to bridge the gap between the mathematics of phase determina-
tion and the world of experimental data and practical application. At about
1956, we acquired apparatus for carrying out X-ray diffraction experiments
with crystals and Isabella Karle taught herself with the aid of a book written by
Martin Buerger how to collect and interpret diffraction photographs. Working
with crystal diffraction data was quite different then than now; computer-aided
collection of diffraction data was essentially nonexistent and, by present stan-
dards, computers were very primitive. The thousands of diffraction data col-
lected in the the experiments were measured by eye with the use of a calibrated
comparison strip. At the present time, data are collected by automatic diffrac-
tometers that measure and record the data after some modest, preliminary
human intervention and the largest computers are many orders of magnitude
superior in speed and capacity than thirty years ago. Technical advances in the
recent past, as exemplified by synchrotron sources of X-radiation and area
detectors, promise even greater advances in the near future in terms of the
speed and facility with which data can be collected. They provide experimental
opportunities that otherwise could not be contemplated.

Once the intensity data are collected, they are transformed into normalized
structure factor magnitudes defined by,

where ε reweights certain subsets of the data [26]. A procedure for doing this is
described in International Tables for X-ray Crystallography [38].

It is apparent on examining (16) (19) and (20) that it is necessary to know
the values of some phases before additional ones can be evaluated. There are
several sources of such information, from certain phase specifications associat-
ed with establishing an origin in the crystal [38], the assignment of symbols to
some phases for later evaluation, and the use on occasion of auxiliary formulas,
such as  and  that define individual phases in terms of structure factor
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magnitudes  a lone [38] .  The number  and types  of  phases  to  be used for
specifying the origin in a crystal has been determined by use of the theory of
invariants and semi-invariants that was developed for this purpose. Depending
upon the type of space group involved, the number can vary from none at all to
as many as three. Suitable tables [38] are available for carrying out this task.

The phase determining procedure is a stepwise one with few contributors to
(16) or (19) at the start. Use at the start of phases associated with the largest
possible values of the normalized structure factor magnitudes, |E|, will assure
that the probability measures, (17) and (21), will be as large as possible. The
large overdeterminacy of the problem helps to ensure that initial probabilities
will be large enough to proceed in a stepwise fashion to build up a sufficiently
reliable set of phase values to effect a solution to the structure problem. Because
the nature of phase determination is inherently probabilistic and contingent in
a stepwise and interdependent fashion, the problem of establishing optimal
procedures based on experimental data was not at all straightforward. There
are a very large number of paths through a phase determination. Among many
of them are pitfalls in which there arise, for example, temptations to take a path
in which the interconnections between phase evaluations flow easily at the
expense somewhat of the probability measures. Such paths are more likely to
lead to missteps and cumulative errors that could damage or defeat a phase
determination than ones that are based only on the highest values of the
probability measures.

There is also an ambiguousness inherent in procedures for phase determina-
tion which is controlled by the use of symbols. The symbols can assume more
than one value. For centrosymmetric crystals, they can have only two phase
values, zero or π. For noncentrosymmetric crystals, experience has shown that
whereas phase values for the general reflections can have any value in the range
from −π to π, it is usually sufficient to use only four possible values for the
symbols spaced π/2 apart. One of the virtues of using symbols is that, as the
phase determination develops, relationships develop among the symbols reduc-
ing the number to be assigned values. Here again, one must proceed with
caution so that reliable relationships are distinguished from those that are not.
With centrosymmetric crystals, the ent i re  phase determinat ion is  carr ied
through before the remaining symbols are given alternative numerical values
and tested to see which set yields a Fourier series that makes good chemical
sense and reproduces the measured intensities well. For noncentrosymmetric
crystals the symbolic addition procedure initially makes use only of (19). After
about 100 phases have been evaluated, the remaining symbols are given
alternative numerical values after which (20) is applied to further extend the
phase set. Again, the correct phase set is the one whose Fourier series makes
good chemical sense and yields a structure that is in line agreement with the
measured intensities. When a satisfactory result is not obtained, it is appropri-
ate to try an alternative path through the phase determination.

An additional specification, whose character also derives from the theory of
invariants and semi-invariants, is required for most noncentrosymmetric space
groups. In making the specification, a choice is made of enantiomorph or axis
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direction or both. A good way in which this specification is achieved in the
symbolic addition procedure is to find that a symbolic representation of a phase
value most likely has a magnitude that differs significantly from 0 and π. T h e
specification is accomplished by assigning a plus or minus sign arbitrarily to
the magnitude of the phase. The enantiomorph ambiguity for noncentrosym-
metric crystals arises from the fact that such a crystal gives the same diffraction
pattern as its mirror image in the absence of detectable anomalous dispersion
effects.

In the course of phase determinations, particularly in the case of noncentro-
symmetric crystals, it may turn out that only a partial structure will appear in a
Fourier map based on the determined phase values. This occurs because the
phase determination went somewhat awry but not altogether so. The partial
structure would be recognized as possibly being a correct fragment because it
would make chemical sense, i.e., the fragment would have connectedness and
acceptable interatomic distances and angles. A method has been developed for
deriving a complete structure from a partial structure [39] that is based on the
use of the tangent formula (20) and has been used in many applications. It may
happen that a partial structure is not placed correctly with respect to a proper
origin in the unit cell of a crystal. Under such circumstances, the use of a
translation function [40-43] to place the fragment properly may be helpful.

The symbolic addition procedure [24,32,36,37] was developed as an out-
growth of the experiences in applying the procedure for phase determination
for centrosymmetric crystals described in the 1953 monograph [23]. In the
monograph, the procedures proposed for sign determination involved the ini-
tial use of auxiliary phase formulas such as  and  [23]. The application of
preliminary phase information obtained from these formulas along with pro-
bability measures associated with individual indications from the phase-deter-
mining formulas facilitated the use of the  formula (16). The combination of
auxiliary formulas and probability theory greatly reduced to a practicable level
the ambiguousness  that  would be obtained in  the employment  of  the 
relation by itself along with some rather insensitive and often misleading
criterion such as internal consistency.

In the course of applying the procedures of the monograph [23], two impor-
tant  features  were found that  ul t imately played an important  role  in  the
symbolic addition procedure. The first feature was that if probability measures
were carefully employed at each step of a phase determination, it was possible
to carry out the procedure with a small set of starting phases. It was also
apparent that the use of symbols could greatly increase the efficiency of the
procedure by carrying along in their alternative values a residual ambiguity
that could not be easily overcome. A sufficient number of reliable relationships
among the symbols usually developed in the course of a phase determination to
reduce the alternative possible sets of phases to consider to just a few. A further
reduction could be obtained, if desired, by applying auxiliary phase determin-
ing formulas at the end of a phase determination to help evaluate the remaining
symbols. If an evaluation were incorrect, as occasionally happened with the
auxiliary formulas, no great harm would be done. The alternative value could
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be tried without the necessity of repeating the phase determination. The
symbolic addition procedure for centrosymmetric crystals is thus the procedure
of the monograph [23] facilitated by the use of symbols and the application of
auxiliary formulas at the end, if needed, instead of at the beginning of a phase
determination.

The symbolic addition procedure for centrosymmetric crystals has several
features in common with the procedure of Zachariasen [44]. The main distinc-
tion from the latter procedure was the application of probability measures to
guide each step of the phase determination, especially in the beginning, the
consequent use of a minimal number of symbols and the resulting minimization
of the ambiguousness of the determination and the optimization of the reliabil-
ity of the result. There were efforts by others in the 1950’s, e.g. Rumanova [45]
and Cochran and Douglas [46] that met with some success. Rumanova devel-
oped a systematic method for using symmetry relations in centrosymmetric
space groups with (16). She used it in connection with Zachariasen’s procedure
[44]. Cochran and Douglas used a variant of (16) based on a formula derived
by Sayre [47] in a procedure that generated a very large number of sets of signs
from which the correct one had to be selected under highly ambiguous circum-
stances.

The procedural features of the symbolic addition procedure for centrosym-
metric crystals were extended, in the main by the efforts of Isabella Karle, to
noncentrosymmetric crystals [24] with the use of (19), (20), and (21). Several
problems arose in developing the technique for phase determination for non-
centrosymmetric crystals concerning, for example, the assignment and hand-
ling of symbols, the use of the probability measure (21), the number of possible
values to assign to the symbols that represent phase values that range continu-
ously from −π to π, the combined use of (19) and (20) for phase determination,
the proper use of the tangent formula for the processes of phase refinement and
phase extension, the development of techniques for specifying an enantiomorph
or axis directions or both, and special considerations such as the avoidance of
certain troublesome triplet phase invariants involving one and two-dimension-
al centric reflections. These various aspects of the symbolic addition procedure
are to be found in references 32 and 38 and in the papers concerning the
applications described further on.

A considerable virtue of the symbolic addition procedure is that, because of
its efficiency, a main part of the procedure for phase determination can be
carried through by hand. For many years, the procedure for centrosymmetric
crystals was carried out in our laboratory completely by hand. In the case of
noncentrosymmetric crystals, the first stage, which involved the use of formula
(19), was performed by hand until about 100 phases were evaluated and useful
relationships developed among the symbols. Only after selected numerical
values were assigned to the few remaining symbols was the tangent formula
(20) applied with the aid of a computer. The benefits of this aspect of the
efficiency of symbolic addition have been the opportunity for those with modest
computing facilities to carry out structure determinations, the possibility of
close interaction with the phase determination as it progresses, and the educa-
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tional value for those newly learning about phase determination to be able to
witness and carry through the procedure by hand.

As the application of direct phase determination began to increase during the
1960’s and structure determination became more and more a part of research
programs, there began to be developed at the end of the 1960’s “program
packages”, software for determining structures from X-ray diffraction data.
Among the ones that are widely used, alternative numerical values have been
used instead of symbolic phases in the case of noncentrosymmetric crystals,
although there are some programs that retain the use of symbols for such types
of crystals .  For those programs that  use al ternat ive numerical  values for
phases, large numbers of alternative phase sets are generated by use of the
tangent formula (20) and the selection of the most likely solutions is dependent
upon the use of an elaborate set of probability formulas, auxiliary formulas and
acceptance criteria. Other computational techniques have also evolved. For
example, random sets of phases have been used as starting sets to be refined by
application of the tangent formula (20). By considering large numbers of
alternative starting sets it is often practicable to obtain a correct answer,
although a large amount of computing is involved. There are also special
programs for specific purposes such as the development of a structural frag-
ment into a complete structure.

The computer programs are quite successful with centrosymmetric crystals
and also do fairly well with noncentrosymmetric crystals having up to 100
independent (nonhydrogen) atoms to be placed in the unit cell. On occasion an
answer will not be forthcoming from the use of a program package. In that
case, crystallographers may pursue the problem with special techniques and
the application of insights and acumen that have been too special to be found in
current programs.

Some names that have been associated with the preparation and dissemina-
tion of computer programs for various aspects of automated, direct structure
determination are Ahmed, Andrianov, Beurskens, Germain, Gilmore, Hall,
Main, Schenk, Sheldrick, Stewart, Viterbo and Woolfson. Among them, some
of their programs have enjoyed a broader range of popularity than others.
Insight into the contents and philosophy of the programs can be obtained from
several publications of the Commission on Crystallographic Computing of the
International Union of Crystallography [48,49,50,51,52].

APPLICATIONS
This section will be devoted to illustrating the broad range of applications that
have been made accessible by the development of direct structure determina-
tion. The examples will be mainly taken from my laboratory but will be seen to
be representative of activities that now produce thousands of structural investi-
gations each year.

The earliest applications after the publication of the monograph (23) were
collaborations with colleagues at the U.S. Geological Survey on colemanite
[53] and meyerhofferite [54]. This was followed by the initial investigations
based on the experimental  work of  Isabel la  Karle ,  for  example,  on p,p’-
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Fig. 3. The four cocrystallizing conformers of cyclohexaglycyl. The conformer at the upper left
occurs four times in the unit cell, the one at the lower left occurs twice and the other two occur once.

dimethoxybenzophenone [55] and N-benzyl-1,4-dihydronicotinamide [56]
that, in time, led to the symbolic addition procedure.

Early applications of the symbolic addition procedure
The first application of the symbolic addition procedure concerned cyclohexa-
glycyl, a synthetic polypeptide in which six glycine residues form an eighteen-
membered ring. The polypeptide crystallizes as a hemihydrate in the triclinic
space group  with eight molecules in the unit cell [36], Fig. 3. An interesting
characteristic of this structure is that the eighteen-membered ring occurs in the
unit cell in four different conformations. Another feature is that all hydrogen
atoms capable of forming hydrogen bonds are so involved.

Noncentrosymmetric crystals are quite common among substances of bio-
chemical interest. The determination of the structure of the amino acid L-
arginine dihydrate [24], which crystallizes in space group  is the first
noncentrosymmetric structure determined by the direct method. As seen in the
diagram of the contents of the unit cell, Fig. 4, the hydrogen-bonding indicated
by the dotted lines is extensive. As a consequence of this hydrogen-bonding the
molecules of arginine form an infinite chain. In addition, water molecules also
form hydrogen bonded infinite chains which are perpendicular to the plane of
the figure.

The stereochemistry of reserpine, a  drug that  has  been used to  control
hypertension and nervous disorders, had been determined by chemical means.
It was of interest, however, to establish the spatial arrangement of the atoms in
the molecule. Reserpine was found to crystallize in the noncentrosymmetric
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Fig. 4. The structure of L-arginine dihydrate viewed along the a axis. Hydrogen bonding is shown
by the dashed lines.

space group, P21 [57]. In this investigation, the symbolic addition procedure
yielded a partial structure which was developed into a complete structure, Fig.
5, by use of the recycling procedure [39] involving the tangent formula. Fig. 5
shows sections from an electron density map projected down the b-axis. The
trimethoxybenzoxy group at the bottom is nearly perpendicular to the rest of
the molecule. The indole group at the top of the diagram is planar and the
dihedral angle between least-squares planes for the indole group and the
benzoxy group is 82°.

Identification and stereoconfiguration
The problems concerning the determination of molecular formula and stereo-
configuration can become especially acute when the amount of sample avail-
able is very small, when the chemical linkages are new and unusual or when the
number of asymmetric centers is large. Under such circumstances, the use of
crystal structure analysis can be not only quite helpful but also essential. An
example of this is provided by batrachotoxin, a powerful neurotoxin that can be
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Fig. 5. Sections from a three-dimensional electron density map for the alkaloid reserpine projected
down the b axis. The electron density contours are equally spaced at  starting with the 
contour

extracted from the skin of frogs, Phyllobates aurotaenia, from tropical America. It
is used by native Indians to tip blow darts for hunting. Purified congeners were
obtained from ethanol extracts of the skins of about 8000 frogs. The amounts
were insufficient to permit the determination of the structural formulae by
standard methods. A few, very small crystals of the 0-p-bromobenzoate deriva-
tive of batrachotoxinin A, one of the congeners, were grown and one crystal was
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Fig. 6. The molecular formula and absolute stereoconfiguration for batrachotoxinin A (R=H)
(heavy solid lines are above plane of paper and dashed ones behind).

selected for structure analysis. It was found to crystallize in space group
P 212 12 1. The specialized position of the Br atom (at 1/5, 0,0) and the restricted
amount of data available limited the amount of information derivable from
knowledge of the location of the Br atom. The structure was determined by use
of the tangent formula to develop partial structural information into a complete
structure. It showed that batrachotoxinin A was a steroidal alkaloid with
several novel features [58], Fig. 6. Other information obtained was the stero-
configuration at the nine asymmetric centers, the conformations of the six rings
including the seven-membered ring containing the alkaloid function, values of
bond lengths, bond angles and torsional angles, the location of intermolecular
hydrogen bonds, and the packing of the models in the unit cell. The absolute
configuration was established by measurement of the anomalous scattering of
the Br atom [59]. From the information obtained from the structural analysis,
the structure and absolute configuration of batrachotoxin and many other
congeners were readily deduced [60].

Another small frog, Dendrobates aurotaenia, occurring in Columbia and Ecua-
dor, secretes from its skin defensive substances among which are two major
toxic alkaloids, histrionicotoxin and dihydroisohistrionicotoxin. These alka-
loids are quite unique having a spiropiperidine system with acetylenic and
allenic moieties, Fig. 7. The molecular structures, stereoconfigurations and
absolute configurations were established by crystal structure analyses of a
hydrochloride and hydrobromide of the histrionicotoxin and a hydrochloride of
the dihydroiso compound [61,62]. Space groups C2 and P2 12 12 1 were involved
in the analyses. The histrionicotoxins appear to offer the first examples of the
occurrence of acetylene and allene moieties in the animal kingdom. Other
congeners that occur in smaller quantities were shown, subsequently, by means
of mass and NMR spectra to differ only in the saturation of the two side chains
[63 and references therein]. The Spiro ring system, with the internal NH...O
hydrogen bond, remained unchanged.
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Fig. 7. Histrionicotoxin is shown on the left top and in the corresponding stereodiagram on the
bottom. Dihydroisohistrionicotoxin is shown on the right top and in the stereodiagram in the
middle.

Another example of the application of X-ray crystal structure analysis to the
determination of structural formula and stereoconfiguration of an unknown
substance is illustrated by the investigation of an alkaloid derived from an
Ormosia plant, jamine, which crystallizes in the triclinic space group, PI [64].
The configuration determined for the molecule is shown in Fig. 8. The connec-
tivity was found to comprise six six-membered rings, five of which were in the
chair configuration and one in the boat configuration. There were six asymmet-
ric carbon atoms and the stereoconfiguration about each was, evidently, readily
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Fig. 8. The stereoconfiguration ofjamine.

apparent. The identification of the nitrogen atoms was also readily made in the
course of the structure determination.

Brassinolide [65-67] is a very potent plant growth promoter. It is active in
very small amounts, 1-10 ng/plant. Brassinolide generates cell enlargement
and stimulates cell division in many food plants and plants grown in arid
regions that  yield oil  and other energy related materials .  The yield from
extraction from plant pollen is very low and therefore large-scale testing
awaited chemical synthesis. Evidently, chemical synthesis would be facilitated
by structural information. A few crystals of brassinolide became available for
crystal structure determination. The crystallization took place in space group
P 21 and the analysis [66] established that the steroid nucleus of the molecule
had a seven atom B-ring lactone, an unprecedented feature for a natural
steroid, Fig. 9. The presence of the lactone appears to be responsible for
promoting the plant growth. Subsequent synthesis has shown that compounds
analogous to brassinolide are easier to prepare in large quantities and have
adequate plant-growth regulating properties. Field evaluations of these regula-
tors are currently underway.

There are very large numbers of examples that could be discussed under the
heading of this section. It is noteworthy, however, that the implications of only
a small number of definitive structure determinations can be extended far
beyond the immediate results of the particular determinations. An outstanding
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Fig. 9. The molecular formula and stereoconfiguration of brassinolide. Note that the B ring is a
seven-membered lactone ring

example is given by some fundmental structural investigations on frog toxins
which have provided the information on which was based the subsequent
establishment of molecular formulas and stereoconfigurations of over 200 relat-
ed frog toxins [68,69].

R E A R R A N G E M E N T S
In the case of rearrangement reactions, crystal structure determination can
again play a particularly useful role because many rearrangement reactions
give products that are the result of vast and unanticipated changes in the
start ing materials .  The fol lowing examples provide i l lustrat ions of  such
changes.

A photorearrangement reaction in which a major rearrangement takes place
is illustrated by the reaction shown in Fig. 10. A crystal structure investigation
of a single optically active crystal, selected from a racemic conglomerate
establ ished the s tructural  formula and configurat ion of  the photoproduct
[70,71]. The substance crystallized in space group P212 12 1. The structure
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analysis showed that the photoproduct consisted of four ring systems, two five-
membered and two four-membered rings.

Ultraviolet irradiation of N-chloracetyltyramine, where there is a hydroxyl
group on the phenyl ring in contrast to the two methoxy groups in the previous
example,  yields ent irely different  photorearrangement products .  HCl was
eliminated and two unusual photodimers, shown in Fig. 11, were produced.
Their molecular formulas and stereoconfigurations have been identified by use
of crystal structure analysis [72]. It is interesting to note that dimer (II) is the
more stable since it is produced from dimer (I) by use of additional ultraviolet
radiation. Dimer (I) crystallizes in space group P2 1/c and dimer (II) crystal-
lizes in space group Pbca. Dimer (I) is seen to have a central cage bounded by
four six-membered rings and two four-membered rings. Each four-membered
ring is puckered, with the torsion angles around the ring bonds having values of
about 20°. The six-membered rings assume distorted boat conformations.
Dimer (II) is seen to have a more complex, partially open, cage bounded by
one three-, two five-, two six-, and one seven-membered ring. The six-mem-
bered rings are again in a distorted boat conformation. Once the structural
characteristics of the photoproducts are known, it is possible to consider
possible reaction mechanisms that describe the intermediate changes that
occur in the rearrangements of the initial materials resulting in the final
products. Postulated mechanisms for the formation ofdimers (I) and (II) have
been presented [73].

Irradiation with ultraviolet light of a solution containing 3-methyl-5,6-diaza-
2,4-cyclohexadien-1-one and 2-propenol (I)      produces a cyclobutane addition
compound (II) which, upon further irradiation, opens and switches bonds to
form a tricyclic molecule (III), Fig. 12. Crystal structure analysis [74] of the
material which crystallizes in space group PI established that the final photo-
product was composed of a fused ring system, one three-membered ring and
two live-membered rings.

C O N F O R M A T I O N
The conformations of molecules can be importantly related to their chemical
and physiological behavior. Crystal structure investigations can be helpful in
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Fig. 11. The configurations of two dimers formed by photorearrangement from N-chloroacetyltyra-
mine. Dimer (II) is seen to be formed from dimer (I) by continued irradiation with ultraviolet light.
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Fig. 12. Irradiation with ultraviolet light of a solution of 3-methyl-5,6-diaza-2,4-cyclohexadien-l-
one (I) and 2-propenol leads to a cyclobutane addition product (II). On further irradiation, (II)
rearranges to a tricyclic product (III).

providing conformational information. It may be argued, and rightly so, that
biologically active materials may assume conformations in the crystalline state
that they would not assume in solution. There are, however, numerous in-
stances of conformational studies in which the results of crystal structure
analyses are either highly suggestive or rather definitive. The following exam-
ples are such instances.

One way in which the crystalline state can imitate the cirumstances found in
solution is to include in the crystallization relatively large amounts of solvent.
Such a crystal is formed by [Leu5]enkephalin (Tyr-Gly-Gly-Phe-Leu) grown
from N,N-dimethylformamide (DMFA)/water. Endogenous enkephalin is a
linear pentapeptide that occurs in the brain as [Leu 5]enkephalin and [Met5] -
enkephalin in varying proportions depending upon the species [75]. Both are
quite flexible and the structural study of [leu5]enkephalin was undertaken in
the hop: that insight into probable conformations would be so derived. The
crystallization took place in space group P21 and it turned out that there were
four molecules of the peptide in the asymmetric unit of the unit cell, each
having a different conformation [76], Fig. 13. The large amount of solvent
surrounding the molecules suggests that the conformations may be relevant to
the circumstances in solution. The four conformers with extended backbones
form an infinite antiparallel B-sheet. p-sheets related by the twofold screw axis
are separated by a 12 Å spacing. Side groups protrude above and below the β −
sheets and are entirely immersed in a thick layer of solvent that fills the volume
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A B C D
Fig. 13. Four conformations of [Leu5]enkephalin that occurred in N,Ndimethylformamide/water.
Note the similarities in the backbone conformations and the differences in the shaded side chains.

between the β-sheets. The crystal was stable only in contact with the mother
liquor. Structurally, it consisted of rather rigid sheets of peptide molecules
separated by spaces tilled with mobile solvent. Many of the solvent molecules
appeared from the X-ray analysis to be completely disordered. An asymmetric
unit of the unit cell contained four enkephalin molecules, eight water mole-
cules, eight DMFA molecules and an unknown number of disordered solvent
molecules.

The crystal of enkephalin contains more than 210 independent C, N and O
atoms and is of a size that lies between what is normally considered small-
structure crystallography (up to 100 nonhydrogen atoms or so) and protein
crystallography (about 500 nonhydrogen atoms or more).

The visual chromophores, 11-cis and all-trans retinal are present in both rod
and cone cells of vertebrate retinas and in the corresponding organs of insects
and crustacea [77]. The photochemical isomerization of the 11-cis isomer to the
trans form is an important step in the visual process with the 11-cis isomer
acting as a photochemical sensor. In the dark, 11-cis retinal is covalently linked
to proteins in the retina known as opsins. They differ in different species and
may differ in different cells of the retina. The details of the geometry of the
retinals had not been determined and, in view of their importance to biological
function, a crystal structure investigation was undertaken on the 11-cis and all-
trans forms. Special precautions had to be observed with the 11-cis retinal. It is
unstable to light and oxygen and its stability is favored by lower temperatures.
In solution, the cis isomer isomerizes to the trans form very readily at 20°C.
Fortunately, crystals of the cis isomer are more stable than its solution. The
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Fig. 14. Two isomers of retinal, the 11-cis and all-trans forms

diffraction data for the cis form were collected in a light-tight container that was
continuously purged with dry nitrogen and held at 16-17°C. Crystal structure
analyses [78,79] of the 11-cis and all-trans forms revealed the detailed geometry
of both, Fig. 14. An additional, independent structure analysis of all-trans
retinal was also reported [80]. Of particular interest was the conformation of
the cis form as there had been much speculation and theoretical work concern-
ing its conformation. The 11-cis retinal crystallized in space group P2 1/c and
the trans isomer in space group P21/n. The all-trans retinal chain is planar with
the six-membered ring inclined to the plane of the chain. The inclination is
given by the torsional angle of the 5-6-7-8 segment which is found to be 59º.
The torsion angle of a planar trans conformation is 180º and that of a planar cis
conformation is 0º. The conformation for the all-trans isomer is typical of

TRANS RETINAL
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Fig. 26. Phenyl rings folded up around the backbone of a biologically active antamanide complex
with Li+ or Na+ providing a lipophilic surface (top pair). In the inactive analogue, Li+perhydro-
antamanide, the cyclohexyl groups are folded down, thus exposing the peptide backbone to the
environment (bottom pair).

carotenoids. In forming the 11-cis retinal from the all-trans form, there is not
only a rotation of 180º about the C(11) =C(12) double bond, but also a rather
unexpected rotation of 141º about the C(12)-C(13) single bond. This additional
rotation relieves the difficulty of too close a contact in the absence of the
additional rotation between the hydrogen atom on C(10) and the hydrogen
atoms of the methyl group attached to C(13) (see the diagram in Fig. 15). At
the time that the manuscript concerning the crystal structure determination of
11-cis retinal was being prepared, a theoretical calculation was published by
Honig and Karplus [81] in which a ground-state configuration for 11-cis retinal
was proposed that closely resembled the result of the crystal structure determi-
nation.

The cyclic decapaptide antamanide acts as an antidote to the toxin phalloi-
din found in the deadly poisonous mushroom Amanita phalloides. Antamanide
can also be isolated from the same mushroom but occurs in much smaller
quantities. The synthetic analog of antamanide in which all four phenylalanyl
residues are hydrogenated to cyclohexylalanyl residues (Cha), cyclic(ValPro-
ProAlaChaChaProProChaCha), has no antitoxic potency despite its ability to
form ion complexes in the same manner as antamanide. A conformational
analysis of the hydrogenated antamanide was carried out by means of a crystal
structure analysis of Li+.perhydroantamanide which crystal l izes in space
group P2 12 12 1 [82], Fig. 16. The backbone encapsulates a Li+ ion in quite the
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same fashion as in Li+.antamanide. In the Li+.antamanide, however, the four
phenyl groups are folded against the backbone, thus providing a hydrophobic
surface for the complex, whereas in Li+.perhydroantamanide the four cyclo-
hexyl moieties are extended away from the folded backbone, with the conse-
quent exposure of large portions of the polar backbone to the surrounding
environment. As a result, elements of the backbone that would be otherwise
shielded from the environment  were found to  make hydrogen bonds and
ligands that would not occur in the Li+ ..antamanide complex. It would appear
that the large change of hydrophobicity around the backbone in the per-
hydroantamanide complex is related to the loss of biological activity.

These few applications represent only a minuscule portion of the broad range
of topics and individual studies represented by the thousands of structural
investigations performed each year. They do illustrate, however, how structure
determination can play a useful and often indispensable role in the progress of
many research disciplines.

ANALYSIS OF MACROMOLECULAR STRUCTURE:
RECENT INTERESTS
The analysis of structures of macromolecules, molecules that consist of at least
about 500 nonhydrogen atoms and more, is facilitated by use of specialized
heavy-atom techniques that have the titles anomalous dispersion and isomor-
phous replacement. Heavy atoms can often be soaked into a macromolecular
crystal without seriously disturbing the structure. As a consequence, the tech-
niques of anomalous dispersion and isomorphous replacement have enjoyed
considerable success in the determination of the structure of native (unsubsti-
tuted) macromolecules.

Anomalous dispersion effects arise from the fact that the atomic scattering
factors, f, as would be used in (3), are in general complex numbers defined by

where f' and f'' are the real and imaginary parts, respectively, of the correction
to f''and are considered the contributions of anomalous dispersion. The scatter-
ing factor f'' is obtained from computations in which it is assumed that the
frequency of the radiation is much larger than the absorption frequencies for
the constituent atoms. The consequence of having atomic scattering factors
with a significant imaginary part, as occurs with the heavier atoms at common-
ly used wavelengths, is that the intensity measured for an acentric reflection h
is, in general, different than that for -h. The fact that  been the basis of
a technique that has broad applications [83] in the field of structure research.

Crystals that have the same unit cell geometry but differ in chemical compo-
sition are called isomorphous. Since it is often possible to substitute heavy
atoms into macromolecules with relatively minor perturbations on the struc-
ture, the criterion for isomorphicity can be fairly readily achieved to good
approximation for such molecules. The method of phase determination based
on one substituted isomorphous structure is called the single isomorphous
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replacement method (SIR) and if several isomorphous structures are available
i t  is  cal led the mult iple  isomorphous replacement  method (MIR).  If  two
isomorphous structures are centrosymmetric, the signs of the structure factors
for both crystals can be determined. In practice, some signs would remain
indeterminate because of experimental errors and the presence of structure
factors of small magnitude. When two noncentrosymmetric crystals form an
isomorphous pair, analysis shows that a twofold ambiguity occurs in the
evaluation of the phases. It can be readily shown, however, that in the case of
noncentrosymmetric crystals many individual phases can be unambiguously
evaluated when the structure of the substituted atoms is known [84]. Such
phases are either close to the value of the corresponding phases for the substi-
tuted atoms or π away from those values. There are a number of ways to
resolve the ambiguity from isomorphous replacement. They involve, for exam-
ple, the use of a second isomorphous substitution or, instead, the additional use
of anomalous dispersion data.

Multiple isomorphous substitution with the occasional additional use of
anomalous dispersion data has been the technique that has led to the enormous
progress in macromolecular structure research of biological importance for the
past 25 years. The early theoretical work that supported the advances in this
field is that of Patterson [4,5] and Bijvoet [85]. With the types of heavy atoms
that are usually substituted into macromolecular structures, there can be
significant effects from anomalous dispersion, so that data collection for both
anomalous dispersion and isomorphous replacement can be, in effect, com-
bined.

My interest in the techniques of anomalous dispersion and isomorphous
replacement was rekindled by a development in my laboratory that demon-
strated the considerable potential of the anomalous dispersion technique in
structure determination. In an application of the anomalous dispersion tech-
nique to the structure determination of the protein, crambin, Hendrickson and
Teeter [86] solved the structure by use of the anomalous scattering from six
sulfur atoms occurring in three disulfide bridges. The experiment was per-
formed as a single wavelength experiment with  radiation which is far
from the absorption edge for S at 5.02 Å. The success with the use of the
relatively weak anomalous scattering from the S atoms coupled with the great
span in wavelength between that of the absorption edge and the wavelength of

 radiation stimulated me to initiate a program to investigate various
theoretical aspects of the single and multiple wavelength anomalous dispersion
techniques and also, in time, isomorphous replacement.

One investigation concerned an exact algebraic analysis of single and multi-
ple wavelength anomalous dispersion [87] by use of the structure factor equa-
tions (3) in which the atomic scattering factors are complex according to (25).
The appropriate structure factor equations are treated as simultaneous equa-
tions and the key to obtaining the final form in which the equations were
expressed was the separation of the contributions from the normal atomic
scattering factors f'' from those of the real and imaginary corrections to f n, f' and
f'', respectively.
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A simple result of the algebraic analysis that concerns the case when a
structure is composed of atoms that scatter normally and one type of atom that
scatters anomalously is as follows,

(26)

where   is the measured magnitude squared of the structure factor at the
wavelength is the magnitude squared of the structure factor for the
nonanomalously scattering atoms and  is the magnitude squared of the
structure factor for the anomalously scattering atoms, but scattering as if they
were doing so normally. The measured  are corrected for vibrational effects
and the latter are also absent from and  The quantities  and

 are defined for a particular λ ,

(27)

a n d

The f' and f''  are tabulated in International Tables [88]. The phase angles 
and  are the angles associated with  and  respectively.

Four equations can be formed from (26) by performing anomalous dispersion
experiments at two different wavelengths and making measurements of the
intensities of relections associated with h and -h. The equations are linear if
the four  quant i t ies ,  h )  

sin  are chosen as the unknowns. It is worthwhile to add the qua-
dratic relationship,  +  = 1, and treat the defining equations in a
least-squares fashion.

A general analysis [87] has also been carried out which is appropriate for any
number and type of anomalous scatterers. This general formulation has a
number of favorable characteristics that are illustrated by the simple set of
simultaneous equations formed from (26) by using multiple wavelengths and
measuring the intensities at h and -h. The unknown quantities are intensities of
scattering and phase differences, all associated with the nonanomalous scatter-
ing. The intensities are those that would be obtained from individual types of
atoms as if each type were present in isolation from all the rest. Knowledge of
the intensities for the structure of an individual type of atom can facilitate the
determination of the structure associated with this type of atom. Once this is
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known, the entire structure can be readily determined. The anomalous scatter-
ing enters the simultaneous equations as separate factors in terms of known,
tabulated quantities. With appropriate definitions of unknown quantities, the
simultaneous equations are linear. It is useful to introduce also quadratic
relationships that exist among the unknown phase differences. The systems of
simultaneous equations involve no approximations and remain exact for any
number or type of anomalous scatterers.

There are some additional features of the equations (26). One concerns the
fact that the usual analysis of single wavelength anomalous scattering leads to
the conclusion that there would be a twofold ambiguity in the evaluation of
certain phase differences. It has been recently shown [89] that information that
is inherent in the measured intensities  and  that gives approximate
information concerning a n d   can be used with (26) for h and -h
to obtain unique or essentially unique values for the phase differences that occur
in (26) with potentially useful accuracy. This was specifically shown for a one-
wavelength experiment for the case of one type or one predominant type of ano-
malously scattering atoms in the presence ofessentially nonanomalously scatter-
ing atoms. It should be more generally true. Hauptman [90] showed earlier the
uniqueness of a one-wavelength anomalous dispersion experiment in terms of
unique values for triplet phase invariants.

A second feature of equations (26) and their generalization to many kinds of
anomalous scatterers concerns the fact that anomalous scatterers in the form of
heavy atoms are often substituted into a native substance that scatters essenti-
ally nonanomalously. In that case, intensity data for the native material corre-
sponds to  in (26), thus reducing the number of unknown quantities.

Another type of theoretical study designed to elicit phase information from
anomalous dispersion and isomorphous replacement concerns the development
of formulas for evaluating the so-called triplet phase invariants. Triplet phase
invariants are sums of three phases whose subscripts add to zero, e.g. 

 In general, the sum of subscripts is carried out by attaching the sign
associated with the corresponding phase to each subscript, e.g., 
is also an invariant. Note that there are triplet phase invariants in (10) and (19)
forming the “sum of angles” formula.

There have been recently two main approaches to the evaluation of triplet
phase invariants from isomorphous replacement and anomalous dispersion
data. One involves the use of the mathematics of the joint probability distribu-
t ion by Hauptman for  isomorphous replacement  [91]  and for  anomalous
dispersion [90], a similar theory for anomalous dispersion by Giacovazzo [92]
and a theory for both techniques by Pontenagel, Krabbendam, Peerdeman and
Kroon [93]. A recent investigation by Fortier, Moore and Fraser [94] of the
evaluation of triplet phase invariants for isomorphous replacement when the
heavy-atom structure is known indicates the potential of this approach for good
accuracy.

A second approach to the evaluation of triplet phase invariants from isomor-
phous replacement and anomalous dispersion data has interested me for the
past few years. It involved initially the development of formulas by use of



approximate but simple algebraic manipulations that were based on certain
mathematical and physical characteristics of the two techniques [95-96]. This
was followed by algebraic analyses [84,97,98] that indicated a potential for
good accuracy for many of a large number of formulas proposed.

The development of optimal strategies for the use of triplet phase invariants
awaits practical experience. If the heavy-atom (anomalously scattering) sub-
structure is known, there are a number of techniques for obtaining values for
individual phases [84,87,89]. In that case, it is quite possible that the triplet
phase invariants would be used mainly for phase extension and refinement. In
those circumstances when the heavy-atom (anomalously scattering) substruc-
ture is not known and resists analysis, the triplet phase invariants may be able
to play a primary role in reaching a solution to the structure since the triplet
phase invariants can be evaluated without knowledge of the substructure.

The enhanced opportunities to carry out multiple wavelength anomalous
dispersion experiments with high intensity and tunable synchrotron X-ray
sources should facilitate the development of applications of the new theoretical
formulations. Coupled with the major advances in computing, the new theories
have the potential to improve the facility with which macromolecular structure
research is performed.
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