Background Story of the Invention of Efficient Blue InGaN Light Emitting Diodes

SHUJI NAKAMURA

SOLID STATE LIGHTING AND ENERGY ELECTRONICS CENTER

MATERIALS AND ECE DEPARTMENTS

UNIVERSITY OF CALIFORNIA, SANTA BARBARA,

Outline

1) Introduction: What is an LED?

2) Material of Choice: ZnSe vs. GaN

- 3) The Beginning: GaN on Sapphire
- 4) Enabling the LED: InGaN

5) Historical Perspective

The LED

ENERGY EFFICIENT WHITE LIGHT

What is an LED?

A Light Emitting Diode (LED) produces light of a single color by combining holes and electrons in a semiconductor.

What is an LED?

A Light Emitting Diode (LED) produces light of a single color by combining holes and electrons in a semiconductor.

Actual Blue LED

Size: 0.4 mm x 0.4 mm

Packaged Blue LED

White LED: Combining Colors

White Light: Blue + Other colors (red, yellow, green)

Other Colors: Convert Blue LED Light to Yellow using Phosphor.

Blue LED

Phosphor

White Light
= Blue + Yellow

White LED

Convert:

Blue → Yellow

Applications for InGaN-Based LEDs

Solid State Lighting

Decorative Lighting

Automobile Lighting

Displays

Agriculture

Indoor Lighting

Energy Savings Impact

~ 40 % Electricity Savings (261 TWh) in USA in 2030 due to LEDs Eliminates the need for 30+ 1000 MW Power Plants by 2030 Avoids Generating ~ 185 million tons of CO₂

1980s: ZnSe vs. GaN

II-VI vs. III-N IN THE LATE '80S

Candidates for Blue LEDs: ZnSe vs. GaN

Semiconductors that possess the required properties to *efficiently* generate blue light: **ZnSe** and **GaN**

BUT ... How does one **create** ZnSe / GaN?

Single crystal growth of material on top of different, available single crystal:

0 % Lattice Mismatch
Few Dislocations (Defects)

16 % Lattice Mismatch
Significant Dislocations (Defects)

GaN on Sapphire: Heavily Defected

1989: ZnSe vs. GaN for Blue LED

ZnSe on GaAs Substrate

- **High Crystal Quality**: Dislocation density < 1x10³ cm⁻²
- Very Active Research: > 99 % of researchers

GaN on Sapphire Substrate

- Poor Crystal Quality: Dislocation density > 1x10⁹ cm⁻²
- **Little Research**: < 1 % of researchers

Interest at 1992 JSAP Conference:

- ZnSe Great Interest: ~ 500 Audience
- **GaN** Little Interest: < 10 Audience
- GaN Actively Discouraged:
 - "GaN has no future"
 - "GaN people have to move to ZnSe material"

1989: Starting Point of Research

Seeking to get Ph.D. by writing papers

- Very few papers written for GaN
- Great topic to publish lots of papers!

Working at a small company:

- Small Budget
- One Researcher

Commonly accepted in 1970s—1980s:

∘ LEDs need dislocation density < 1x10³ cm⁻²

Never thought I could invent blue LED using GaN...

Development of GaN

GAN MATURES

MOCVD GaN before 1990s

MOCVD Reactor

H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, *Appl. Phys. Lett.*, **48** (1986) 353—355

MOCVD System:

- High carrier gas velocity:~ 4.25 m/s
- Poor uniformity
- Poor scalability
- Poor reproducibility
- Poor control

AIN Buffer Layers:

- Crack free GaN growth
- High Structural Quality GaN

But ...

 Al causes significant problems in MOCVD reactor, undesired

Invention: Two-Flow MOCVD

1991: S. Nakamura *et al.*, *Appl. Phys. Lett.*, **58** (1991) 2021—2023

Invention of **Two-Flow** MOCVD System (MOCVD: Metal-Organic Chemical Vapor Deposition)

Reproducible, uniform, high quality GaN growth possible

Low carrier gas velocity: ~ 1 m/s

Schematic of Two-Flow MOCVD

Main Breakthrough:

Subflow to gently "push" gases down and improve thermal boundary layer

Two-

First MOCVD GaN Buffer Layer

1991: S. Nakamura, *Jpn. J. Appl. Phys.*, **30** (1991) L1705—L1707

GaN Buffer Layer on Sapphire substrate:

High Quality GaN Growth

Smooth and Flat Surface over 2" Substrate

Highest Hall mobilities reported to date:

No Buffer: 50 cm²/V s

AIN Buffer: 450 cm²/V s

No Buffer: 200 cm²/V s

ow GaN Buffer: 600 cm²/V s

Hall Mobility vs. GaN Thickness

Passivation of p-type GaN

1992: S. Nakamura *et al.*, *Jpn. J. Appl. Phys., 31 (1992) L139—L142*

1992: S. Nakamura et al., Jpn. J. Appl. Phys., 31 (1992) 1258—1266

Discovery: Hydrogen (H^+) is source of passivation of p-type GaN

As grown MOCVD GaN contains significant hydrogen concentrations:

Thermal Annealing of p-type GaN

Prior: Everyone annealed in **H**⁺ **containing** environment: **no** *p***-type GaN**

Thermal Annealing in H⁺ free environment: p-type GaN, Industrial Process Compatible

GaN Based Diodes

<u>p-n GaN Homojunction</u>

p-n GaN Homojunction

(as developed by Akasaki & Amano)

- Good Crystal Quality
- Very Dim Light Production
- Very Inefficient
- Output power << mW
- Cannot tune color

Not Suitable for LEDs

Needed

- Tunable Colors
- Efficient Device Structure
- Output Power > mW

Double Heterostructure

(**Z.I. Alferov** & **H. Kroemer**, 2000 Nobel Prize in Physics)

Confines carriers, yielding higher Quantum Efficiencies

Homojunction vs. Double Heterostructure

Energy Band Diagrams

Internal Quantum Efficiency

$$\eta_{IQE} = \frac{\text{Light generated}}{\text{Electrons injected}} = \frac{R_{radiative}}{R_{radiative} + R_{non-radiative}} = \frac{Bn^2}{An + Bn^2 + Cn^3}$$
Auger

Shockley-Read-Hall (SRH) Spontaneous Emission

Double heterostructures **increase carrier concentrations** (*n*) in the active layer and **enhance radiative recombination** rates (more light generated).

Development of InGaN

ENABLING THE HIGH-EFFICIENCY LED

InGaN: At the Heart of the LED

GaN Double Heterojunction (DH)

GaN DH-LED: Band Diagram

InGaN meets DH requirements

Smaller, Tunable Band Gap / Color by changing **Indium** in **In_x**Ga_{1-x}N Alloy

Significant Challenges though ...

- Hard to incorporate Indium as high vapor pressure (Indium boils off)
 - Growth at substantially lower T:
 - Poor Crystal Quality
 - More Defects, Impurities
- Grow thin Layer ("Quantum Well")
 - Need fine Control over Growth Conditions
 - High quality interfaces / surface morphology
- Introduces Strain in Crystal
 - Indium ~ 20 % bigger than Gallium

InGaN growth in 1991

Despite numerous attempts by researchers in the 1970s—1980s, high quality InGaN films with **room temperature band-to-band emission had not been achieved**.

Photoluminescence

N. Yoshimoto, T. Matsuoka, T. Sasaki, A. Katsui, *Appl. Phys. Lett.*, **59** (1991) 2251—2253

InGaN Growth:

- Poor quality at low T
- Low incorporation at high T
- Hard to control In concentration
- High impurity incorporation
- Heavily defected

InGaN Luminescence:

- No band-to-band light emission at room temperature (fundamental for any LED device)
- Significant defect emission

High Quality InGaN Layers

1992: S. Nakamura *et al.*, *Jpn. J. Appl. Phys.*, **31** (1992) L1457—L1459

Enabling Technology: Two-Flow MOCVD

High Quality InGaN Growth with Band-to-Band Emission

Controllably vary Indium Concentration and hence color

Photoluminescence Spectra of InGaN

Wavelength vs. Indium Fraction

First High Brightness InGaN LED

1994: S. Nakamura *et al.*, *Appl. Phys. Lett.*, **64** (1994) 1687—1689

Breakthrough Device with Exceptional Brightness

(2.5 mW Output Power @ 450 nm (Blue))

Optimization of thin InGaN Active Layer

The Blue LED is born

1st InGaN QW Blue/Green/Yellow LEDs

1995: S. Nakamura *et al.*, *Jpn. J. Appl. Phys., 34 (1995) L797—L799*

High Brightness LEDs of **varying colors** by increasing Indium content. Demonstration of **Quantum Wells** (QWs).

1st Violet InGaN MQW Laser Diode

1996: S. Nakamura *et al.*, *Jpn. J. Appl. Phys.*, **35** (1996) L74—L76

First Demonstration of a Violet Laser using multiple QWs.

<u>Light Output vs. Current</u>

Comparison InGaN vs. other LEDs

Possible Origins of High Efficiency

Indium Fluctuations form localized states:

Separate electrons from defects

Atom Probe Tomography, D. Browne et al., UCSB

Chichibu, Nakamura et al., Appl. Phys. Lett., 69 (1996) 4188; Nakamura, Science, 281 (1998) 956.

Historical Perspective

PAST, PRESENT, FUTURE

Historical: LED Efficiency

Contributions towards efficient blue LED

GaN/InGaN on Sapphire Research

GaN

	(7	Ţ	
(
	3			

_	Year	Researcher(s)	Achievement
	1969	Maruska & Tietjen	GaN epitaxial layer by HVPE
	1973	Maruska <i>et al.</i>	1 st blue Mg-doped GaN MIS LED
	1983	Yoshida <i>et al.</i>	High quality GaN using AlN buffer by MBE
	1985	Akasaki & Amano et al.	High quality GaN using AIN buffer by MOCVD
	1989	Akasaki & Amano <i>et al.</i>	p-type GaN using LEEBI (p is too low to fabricate devices)
>	1991	Nakamura	Invention of Two-Flow MOCVD
	1991	Moustakas et al.	High quality GaN using GaN buffer by MBE
	1991	Nakamura	High quality GaN using GaN buffer by MOCVD
	1992	Nakamura <i>et al.</i>	p-type GaN using thermal annealing,Discovery hydrogen passivation (p is high enough for devices)
	1992	Nakamura et al.	InGaN layers with RT Band to Band emission
	1994	Nakamura <i>et al.</i>	InGaN Double Heterostructure (DH) Bright Blue LED (1 Candela)
	1995	Nakamura et al.	InGaN DH Bright Green LED
	1996	Nakamura et al.	1 st Pulsed Violet InGaN DH MQW LDs
	1996	Nakamura et al.	1 st CW Violet InGaN DH MQW LDs
	1996	Nichia Corp.	Commercialization White LED using InGaN DH blue LED

UCSB's Vision

LED based White Light is great, Laser based is even better!

Strip

Acknowledgements

Nichia:

Nobuo Ogawa, Founder of Nichia Chemical Corp.

Eiji Ogawa, President

Colleagues of R&D Departments in 1989—1999

All employees of Nichia Chemical Corporation

UCSB:

Chancellor Henry Yang

Dean Rod Alferness, Matthew Tirrell

Profs. Steve DenBaars, Jim Speck, Umesh Mishra

