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ABSTRACT

The order of stages in a multistage game is often interpreted by looking at
earlier stages as involving more long term decisions. For the purpose of
making this interpretation precise, the notion of a delay supergame of a
bounded multistage game is introduced. A multistage game is bounded if the
length of play has an upper bound. A delay supergame is played over many
periods. Decisions on all stages are made simultaneously, but with different
delays until they become effective. The earlier the stage the longer the delay.

A subgame perfect equilibrium of a bounded multistage game generates a
subgame perfect equilibrium in every one of its delay supergames. This is the
first main conclusion of the paper. A subgame perfect equilibrium set is a set
of subgame perfect equilibria all of which yield the same payoffs, not only in
the game as a whole, but also in each of its subgames. The second main conc-
lusion concerns multistage games with a unique subgame perfect equilibri-
um set and their delay supergames which are bounded in the sense that the
number of periods is finite. If a bounded multistage game has a unique sub-
game perfect equilibrium set, then the same is true for every one of its
bounded delay supergames.

Finally the descriptive relevance of multistage game models and their
subgame perfect equilibria is discussed in the light of the results obtained.

1. Introduction

In the economic literature one finds many game models, in which the play-
ers make simultaneous decisions on each of a number of successive stages,
always fully informed about what has been done on previous stages. An early
example can be found in my paper " a simple model of imperfect competi-
tion where 4 are few and six are many (Selten, 1973). In this oligopoly model
the players first decide whether they want to take part in cartel bargaining.
This participation stage is followed by a cartel bargaining in which quota car-
tels can be proposed and agreed upon. The third and last stage is a supply
decision stage in which production quantities are fixed.
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Another example is a two stage duopoly model with production capacity
decisions on the first stage and Bertrand price competition on the second
stage (Kreps and Scheinkman, 1983). Multistage game models can be analy-
zed on the basis of the subgame perfect equilibrium concept (Selten, 1965),
the simplest refinement of ordinary game theoretic equilibrium (Nash,
1951). Sometimes additional selection criteria are combined with subgame
perfect equilibria, like symmetry and local efficiency in the case of my above
mentioned model. The analysis of my model yields the result that up to 4
competitors always form a cartel whereas in the presence of 6 or more com-
petitors the probability of cartel formation is less than 2%. The model by
Kreps and Scheinkman deepens our understanding of Cournot’s (1838)
oligopoly theory. In equilibrium Cournot quantity competition takes place
on the first stage of their model. The examples show that the analysis of
multistage game models can lead to interesting theoretical conclusions.

In some cases it may be justified to look at the stages of a multistage game
model as decision points succeeding each other in time. However, often this
direct temporal interpretation is not adequate. Many multistage game
models do not really aim at the description of situations in which decisions
must be made in a fixed time order. Thus the model of Kreps and
Scheinkman places capacity choice before price choice, not because price
choice cannot precede capacity choice, but rather because capacity decisions
are considered to be more long term than price decisions. It seems to be
natural to consider long term decisions as fixed, when short term decisions
are made. “Term length” in the sense of a position on a short term-long term
scale rather than time is the consideration underlying the order of stages. If
decisions of greater term length are modelled as made on an earlier stage,
this is intended to have the effect that in subgame perfect equilibrium more
short term decisions are based on more long term decisions taken as fixed.

The term length interpretation looks at a multistage game model as a con-
densed description of an ongoing situation in which stage decisions are not
made once and for all. Strategic variables may change over time, but more
short term decisions are in some way subordinated to more long term ones.
The reasons for this subordination are not explicitly spelled out.

Simple oligopoly models like the Cournot model which involve only one
stage are usually also interpreted as condensed descriptions of ongoing situ-
ations. The literal interpretation as a one-shot game would leave little room
for applied significance. One must think of such models as being played
repeatedly in a supergame (Aumann, 1959, Friedman, 1977), but without
making use of the potential for quasicooperation which may be present in
such situations. The analysis of the one shot game instead of the supergame
amounts to the assumption that any kind of collusion is excluded by effecti-
vely enforced cartel laws or for other reasons.

Similarly one could look at a multistage game model as representing the
structure of a period in a supergame. However, this would mean that one
sticks to the direct temporal interpretation of the order of stages. Obviously
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the term length interpretation requires a different picture of the underlying
ongoing situation. It is the modest purpose of this lecture to provide an expli-
cit model of the underlying situation which justifies the reduction to the mul-
tistage game with its subordination of the shorter term to the longer term.

What does it mean in the model by Kreps and Scheinkman that capacity
decisions are long term and price decisions are short term? It could mean
that due to exogenous institutional circumstances capacities can be adjusted
only at certain points in time, say at the beginning of the year, whereas pri-
ces can be changed every day. Alternatively one could think of a difference
of change costs, high for capacity adjustments and low for price changes.
This would lead to a model in the spirit of the inertia supergame (Marschak
and Selten, 1978). A third possibility is the answer given here. It focusses on
the delay between the time a decision is made and the time at which it beco-
mes effective. This delay may be two years for capacity adjustments and only
one day for price adjustments. The longer the delay the more long term the
decision is considered to be.

It seems to me that in many cases the difference between a more long term
and a more short term decision is adequately explained as a difference of
delay. Of course, in some multistage game models necessities of temporal
order, exogenous institutional circumstances and differences of change costs
may also be considerations in the interpretation of the order of stages.
However, here we shall only be concerned with the term length interpreta-
tion elaborated by looking at differences of term length as differences of
delay times needed until a decision becomes effective. The underlying ong-
oing situation will be modelled as a special kind of game, called a “delay
supergame”. In a delay supergame decisions on all strategic variables are
made at the same time, period after period, but these decisions become
effective with different delays. Thus, in period t decisions on the price in t+l
and capacity in t+10 may be made, on both variables at the same time and
simultaneously by all players.

In a delay supergame the players have full information about previous his-
tory of play, but not about simultaneous decisions made by other players. All
decisions made in a period become publicly known at the beginning of the
next period.

It does not really matter exactly how long the delays are. For the analysis
of delay supergames only the order of the decision variables with respect to
delay length matters.

A delay supergame is not necessarily played for a fixed number of periods;
the definition will involve a probability distribution over the number of
periods played. We speak of a “bounded” delay supergame if the number of
periods has a finite upper bound and of an “unbounded” one otherwise. The
distinction between bounded and unbounded delay supergames is game the-
oretically important.

Every subgame perfect equilibrium of a bounded multistage game always
generates a subgame perfect equilibrium for every one of its bounded or
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unbounded delay supergames. This is the first main conclusion of the paper
(theorem 1 in 5.3). The generated equilibrium can roughly be described as
the repeated application of the multistage game equilibrium strategies in
every period played.

In general, a delay supergame and especially an unbounded one may have
many additional subgame perfect equilibria. It is well known that this hap-
pens already in ordinary supergames (Rubinstein, 1976, 1980, Benoit and
Krishna, 1985). Since normal form games are special multistage games with
only one stage, supergames are special delay supergames.

A subgame perfect equilibrium set is a set of subgame perfect equilibria
all of which yield the same payoffs not only in the game as a whole but also
in each of its subgames. A multistage game or a delay supergame will be cal-
led “determinate” if the set of all of its subgame perfect equilibria is a sub-
game perfect equilibrium set. Every bounded delay supergame of a deter-
minate bounded multistage game is determinate. This is the second main
conclusion of this paper (theorem 2 in 5.5).

This lecture will not be concerned with the question which kind of “folk
theorems” hold for which class of delay supergames. Such theorems are
interesting from the point of view of normative game theory, but their appli-
ed significance is limited. Finite supergames of prisoners’ dilemma games
have only one subgame perfect equilibrium which prescribes the non-coo-
perative choice everywhere, but nevertheless experienced experimental sub-
jects cooperate in such games until shortly before the end (Selten and
Stoecker, 1986). On the other hand in some supergame-like oligopoly expe-
riments cooperation is not observed (Sauermann and Selten, 1959, Hoggatt,
1959, Fouraker and Siegel, 1963, Stern, 1967). It is an empirical question
under which conditions behavior in a delay supergame converges to a sub-
game perfect equilibrium of the underlying multistage game. At the end of
the paper this problem will be discussed in more detail.

Instead of the usual framework of the extensive game (von Neumann and
Morgenstern, 1944, Kuhn, 1953, Selten, 1975) a somewhat different one is
used here, which is especially adapted to multistage games and their delay
supergames. Simultaneous decisions are represented as being made at the
same history of previous play and information is not explicitly modelled. A
“choice set function” defined recursively together with a “path set” take over
the role of the game tree. As in the usual extensive form a “probability assign-
ment” describes the probability of random choices and a payoff function
determines the payoffs at the end of a play. The framework could be made
as general as that of an extensive game by the additional introduction of
information partitions for the players but this will not be done here.

Even if our main conclusions are intuitively plausible and not surprising
some formalism is necessary to make statements and their proofs precise.
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2. Multistage games

A multistage game will be defined as a structure built up of four constituents,
a start s, a choice set function A, a probability assignment p, and a payoff
function h. The start s is a symbol which represents the situation before the
beginning of the game. The choice set function describes what choices are
available to the players in every situation which may arise in the game. The
probability assignment p assigns probabilities to random choices and the pay-
off function h specifies the payoffs at the end of the game. Detailed formal
definitions are given below.

2.1 The choice set function

A multistage game involves n personal players l,...,n and a random player 0
(interpreted as a random mechanism). In the following we present a joint
recursive definition of a choice set function and the notion of a path (a path
represents a previous history of play). In addition to this, further auxiliary
definitions like that of a play, a preplay, and a choice combination are intro-
duced. Interpretations are added in brackets.

The set of all choice combinations at u is denoted by A(u).

3. If u is a preplay and a is a choice combination at u, then v = ua is a path.
All paths are generated in this way.

Notation: The set of all paths is denoted by U, the set of all plays by Z and
the set of all preplays by P . According to 3. a path u = s a 1...ak is built up as
a sequence beginning with the start s and continued by successive choice
combinations a1,...,a k.

Finiteness of random choice sets: We only consider choice set functions with
the additional property that all random choice sets Pq,(u)  are finite. In this
way we avoid tedious technicalities. In the following finiteness of all random
choice sets will always be assumed.
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2.2. The probability assignment

A probability assignment p assigns a probability distribution pu, over A)(u) to
every preplay at which the random player is active.

Auxiliary definitions and notation: The probability assigned to a choice a0

E b(u) by pu is denoted pu( a0). The length of a path u = sat...ak is the num-
ber k of choice combinations following s in u. The length of u is denoted by

|u|.
Comment: Our framework does not exclude multistage games without an

upper bound on the length of a preplay. Multistage game models usually
have a finite number of stages. Arbitrarily long preplays cannot arise in such
models. However, we aim at a definition which also covers delay supergames
without any bound on the number of periods. Unbounded delay supergames
will involve stopping probabilities which have the effect that with probability
1 the game ends in finite time and that expected payoffs can be defined. In
order to achieve this purpose for our general framework we impose a joint
condition on the choice set function A and the probability assignment p.

Random stopping condition: A positive integer µ and a real number δ with 0
< δ < 1 exist such that for every preplay u with |u| 1 2 l.t the choice set A0(u)
contains a choice ω) with p,,(o) 2 δ and with the following property: If ω is
the random player’s component of a E A(u), then v = ua is a play.

We shall only consider multistage games, for which the random stopping
condition is satisfied. It will always be assumed that this is the case.

to every play z E Z. The components h,(z) of h(z) are real numbers. h,(z) is
player i’s payoff for z.

Boundedness of payoffs: We only consider payoff functions with the property
that constants C0 and C1 exist such that

We impose this boundedness condition in order to make sure that expected
payoffs can be defined. In view of the intended application to delay super-
games, it is important to permit an increasing linear dependence on the
length of a play. It will always be assumed that payoffs are bounded in this
way.
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is composed of four constituents, a start s, a choice set function A, a proba-
bility assignment p and a payoff function h, with the properties explained
above (see 2.1, 2.2, and 2.3).

A multistage game G = (s, A, p, h) is called bounded, if in G the length of a
path is bounded from above. Obviously in such games a maximum length M
of a path exists. It can be seen immediately that the existence of this maxi-
mum length M implies that the random stopping condition of 2.2 holds with
µ = M simply because there are no preplays u with |u| ( 2 M.

2.5 Strategies

In sections 2.5 - 2.7 all definitions will refer to a fixed but arbitrary multista-
ge game G = (s, A, p, h). The set of all preplays at which player i is active is
denoted by Pi. We call Pi player i’s preplay set. A local strategy of a personal play-
er i at a preplay u E Pi is a probability distribution biu over player i’s choice
set Ai(u) which assigns positive probabilities to finitely many choices only.
The probability assigned to a choice ai E A,(u) by biu is denoted by bi,,(ai).

A behavior strategy bi of player i is a system of local strategies

specifying a local strategy biu for every preplay u of player i. Player i’s preplay
set Pi may be empty. In this case the definition of a behavior strategy is to be
understood in such a way that player i has exactly one behavior strategy, the
empty strategy.

Comment: In multistage games every player is always fully informed about
all choices on previous stages. This implies that such games have perfect
recall. It is clear that the extensive games representing a multistage game
have the formal property of perfect recall as it is usually expressed (Kuhn
1953, Selten 1975). Kuhn (1953) has proved a theorem which shows that
without any essential loss the noncooperative analysis of finite extensive
games with perfect recall can be restricted to behavior strategies. Aumann
(1964) has generalized this theorem to extensive games in which a conti-
nuum of choices may be available in some choice sets. This is important in
the context of multistage game models which usually involve continuously
varying decision parameters.

In order to avoid tedious technical detail we shall restrict our attention to
finite local strategies, i.e. local strategies with a finite carrier and finite be-
havior strategies which specify such local strategies only.

Further definitions: A local strategy is called puke  if it assigns probability 1 to
one of the choices. Pure local strategies can be identified with choices. The
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set of all finite local strategies of a player i at a preplay u E Pi is denoted by
B,,. The set of all behavior strategies of a personal player i is denoted by B i.
A pure  strategy of a personal player i assigns a pure local strategy or, in other
words, a choice at u to every u E Pi.

A strategy combination b = (b1,...,b n) is an n-tuple specifying a behavior stra-
tegy bi for every personal player. A strategy combination is called pure, if all its
components are pure. The set of all strategy combinations is denoted by B.

2.6 Realization probabilities

Consider a strategy combination b = (b,,..., b,) and a preplay u. For every
personal player i active at u let biu be the local strategy assigned to u by bi.
For every choice combination

In this way a probability distribution bu over A(u) is associated to a strategy
combination b = (b1 

,..., bn) and a preplay u.
Now consider a path v E V with v = sa1...a k. We say that a path u = sa1...a j

is on  v if we have j 5 k and the first choice combinations a1,...,a j are the same
in u and v. The realization probability of v under b = (b 1,...,b n) is the product of
all bu(a) with ua on v: This probability is denoted by b(v).

The realization probability of v = sa1...ak is interpreted as the probability that
in the course of playing the game with the strategies in b the play passes the
choice combinations a1,...,a k one after the other.

2.7 Expected payoffs

For every strategy combination b = (b1,...,bn) we shall define expected payoffs
H i(b) for every personal player i = 1,..., n. We shall focus on a fixed but arbi-
trary personal player i. In the case of a bounded multistage game G player i’s
expected payoffs are defined as follows:
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In the following we shall assume that G is an unbounded multistage game. In
this case the definition of expected payoffs is essentially the same as in the
bounded case, but it needs to be elaborated, since infinite sums do not neces-
sarily converge. For k = 0,1,... let Zk, be the set of all plays z with |z|  = k. Player
i’s expected payoff Hi(b) is defined as

Since all local strategies assign positive probabilities to finitely many choices
only, these sums are finite. Let µ and δ be numbers such that the random
stopping condition holds with these numbers. The random stopping condi-
tion permits the conclusion that for k = p, p+l,...  we have

and therefore

Another conclusion from the second last inequality is the following one
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3. Equilibria

In this section we shall first define equilibrium in the framework of the mul-
tistage game. Then we look at subgames and subgame perfectness will be
defined. As before, all definitions refer to a fixed but arbitrary multistage
game G = (s, A, p, h).

3.1 Equilibrium

An i-incomplete strategy combination bi is an (n-1)-tupel of behavior strategies bj

with one strategy for all personal players except player i:

A strategy combination b = (b,,... b,) is an equilibrium, if it is a best reply to
itself. An equilibrium set E is a set of equilibria with the property that the pay-
off vector H(b) is the same one for all b E B.
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The set of all these paths is denoted by U u. Paths in Uu are at the same time
paths in G starting with s and paths in Gu starting with u. The probability
assignment pu is the restriction of pu to Uu. The set of all plays in Gu is deno-
ted by Zu. The payoff function hu is the restriction of h to Zu. It can be seen
immediately that u, Au, pu and hu form a multistage game with all the pro-
perties required in 2.1, 2.2, and 2.3.

Comment: Even if we did not formally describe how a multistage game is
mapped to an equivalent extensive game, it can be seen without difficulties
that the subgames defined above correspond to the subgames of an equiva-
lent extensive form.

3.3 Subgame perfectness

We continue to look at a subgame G u of G. The set of all preplays in UU at
which player i is active is denoted by Pill. The restriction of a behavior strate-
gy bi for G to P,” is a behavior strategy bill for the subgame Gu. We say that bi

u

is the strategy induced by bi on Gu. Similarly a strategy combination bu =
(b,l’,..., bn

u) is induced by b = (b1,...,b n) if for i = l,..., n the behavior strategy
b i

u is induced by bi on Gu. An i-incomplete strategy combination bu, is indu-
ced by an i-incomplete strategy combination b-1 if every component of bu., is
induced by the corresponding component of b -1. A set Eu of strategy combi-
nations for Gu is induced by a set E of strategy combinations for G , if Eu is the
set of all strategy combinations bu induced by strategy combinations b E E.

Let r i be a best reply to a strategy combination b = (b 1,...,b n) of G. For
every subgame Gu of G let ri

u, be the strategy induced by ri on Gu and bu =
(b1

u,..., bn

u) the strategy combination induced by b on Gu. We say that ri is a
subgame perfect best reply to b if for every subgame Gu of G the behavior strate-
gy ri

u, is a best reply to bu.
An equilibrium g = (6 1,...,  E,,)  is subgame perfect if it induces an equilibrium

on every subgame Gu of G or, in other words, if for i = 1,...,n the behavior
strategy bi is a subgame perfect best reply to i. Similarly an equilibrium set
E of G is subgame perfect if it induces an equilibrium set EU on every subgame
G u of G.

4. Delay supergames

In this section delay supergames will be formally defined. A game of this kind
is associated with a bounded multistage game G. In addition to the underly-
ing game G the description of a delay supergame involves further specifica-
tions. It is necessary to specify delays after which decisions made on different
stages become effective, stopping probabilities as a function of time and ini-
tial conditions on what is carried over from the past.

The interpretation of a delay supergame will focus on the case that in the
underlying bounded multistage game K decision variables are fixed one after
the other by some or all players in K successive stages. The definition of a
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multistage game does not exclude the possibility that different kinds of deci-
sions have to be made at different preplays of the same length. However, in
such cases it may not be adequate to assume that the delay after which a deci-
sion becomes effective depends only on the length of the preplay at which it
is made.

In section 4 all definitions refer to a fixed but arbitrary bounded multista-
ge game G = (s, A, p, h) in which the maximum length of a play is K. A delay
supergame of G is itself also a multistage game G* = (s*, A*, p*, h*) whose
constituents are derived in a systematic manner from G and some additional
specifications to be explained in 4.1 - 4.4.

4.1 Delay vector

The number mk is called the delay of stage k. It is interpreted as the number
of periods after which a decision on stage k becomes effective.

4.2 Stopping rule

A delay supergame of G begins with an initial period t, and is played either for
at most finitely many periods to,..., T or for potentially infinitely many
periods t,,, t, + 1,... In the first case the delay supergame is bounded and in
the second case it is unbounded. In the bounded case a reachable period is one
of the periods to,..., T. In the unbounded case all periods t,, t, + 1,... are rea-
chable. The set of all reachable periods is denoted by R.

A stopping rule w assigns a stopping probability wt with

to every reachable period t E R. The stopping probability wt  is interpreted as
the conditional probability with which the delay supergame stops in period
t, if period t-l has been reached. As will be explained later, no payoffs are
obtained for period t if the game stops in period t. The players do not know
whether the game stops in t when they make their choices at t. This depends
on a random choice at t. All choices at t including this random choice are
thought of as being made simultaneously. In the bounded case the game
always stops after period T, if it is reached.

We think of w as a function together with the set R on which it is defined.
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In the bounded case, T will always denote the last reachable period. In the
unbounded case we shall always assume that w satisfies the following stop-
ping requirement.

Stopping requirement: A real number 6 with 0 < δ < 1 and a positive integer
µ exist, such that the following is true:

As we shall see later, this stopping requirement secures the random stopping
condition of 2.2 for unbounded delay supergames.

4.3 The initial status assignment

In the following m will always be a fixed but arbitrary delay vector, t o will stand
for the initial period, and w will be a fixed but arbitrary stopping rule.

Consider a delay mk and a reachable period t,,t z with t < mk The inter-
pretation of mk as the delay until a stage-k-decision becomes effective sug-
gests that a stage k decision for period t,,t 2 should not be modelled as being
made within the delay supergame but rather as predetermined by the past.
Accordingly the definition of a delay supergame associated with G requires
the specification of all decisions of this kind in a way which will be explained
below.
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The notation x(., s*) will be used for the initial status assignment. In the fol-
lowing x(., s*) will always be a fixed but arbitrary initial status assignment
fitting the delay vector m and the stopping rule w.

4.4 Initial payoff vector

As in an ordinary supergame in a delay supergame payoffs for the periods
played are accumulated as the game goes on. However, it will be convenient
to permit the possibility that some fixed payoffs will be earned in addition to
this. One may think of these payoffs as carried over from the past in a simi-
lar fashion as the initial status assignment x(.,s*). Such payoffs carried over
from the past arise naturally in subgames of delay supergames.

An initial payoff vector

is an n-vector with real valued components. c, is called player i’s initial payoff:
In the following c will always be a fixed but arbitrary initial payoff vector.
The inclusion of an initial payoff vector among the specifications of a delay
supergame has the purpose to define a delay supergame in such a way that
the concept also covers the subgames of delay supergames.

4.5 The choice set function of the delay supergame

In 4.1 - 4.4 we have explained what has to be specified in order to describe
a delay supergame associated to a bounded multistage game G: A delay vec-
tor m, an initial period t,, a stopping rule w, an initial status assignment
x(.,s*), and an initial payoff vector c determine a delay supergame G*= T(G,
m, w, x(.,s*), c). One may look at I- as a function which assigns a multistage
game G* to every bounded multistage game G augmented by the additional
specifications shown as arguments of r. This will be made precise below.

The upper index * will be used wherever notation aims at details connec-
ted to G* which have a counterpart in G, e.g. preplays, plays, etc. . The star
will not be used for symbols like m, w, x, and c which need not be distingu-
ished from corresponding objects in G.

The start s* is a symbol which represents the situation before period t. We
now recursively define the choice set function A*, the path set U*, and the
status function x(.;) which assigns a path of G to every pair (t, u*) of a rea-
chable period t and a path u* E U*. It is clear that s* is a path and that for
all reachable t the status x(t, s*) is already given by the initial status assign-
ment. The recursive definition rests on this basis.

For i = 0,...,n and for every path u* of G* let Di(u*) be the set of all rea-
chable periods of the form t,+lu*lt  mk with k = l,..., K for which 4 (x(&u*))
is non-empty. Di(u*) is interpreted as the set of all periods for which i has to
make a decision at u*, if u* is a preplay. We refer to the elements of Di(u*)
as the aim periods and to Di(u*) as the aim period set at u*. The union of all
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D i(u*) with i = 0,...,n is denoted by D(u*). This set is called the joint aim peri-
od set at u*.

For i = 0,...n and every path u* let A*.,(u*)  be the set of all systems of the
form

If u* is a preplay, then the elements ai* of A.i* are choices of player i and in
the case of a personal player i, all choices of player i. The component a it of
ai* is called player i’s decision for t at u  *. The random player has an additional
choice ω, the stopping choice, at every preplay. If A.,(u*)  is empty the random
player also has a continuation choice 8

It still needs to be explained what distinguishes a play z* from a preplay u*.
A play z* must be of the form

In case (2) we speak of a maximal play and in case (1) of a submaximal play.
In unbounded delay supergames plays cannot end in any other way than by
a random choice ao*= ω. However, in a bounded delay supergame a play can
extend over all T-t,+1 reachable periods t,,...,T.  The length of a maximal
play is |z*| = T-t,tl.

The periods of a play z* in which the random choice was not ω are called
unstopped. The last period t,t |z*| -1 of a submaximal play is called stopped.
The set of all unstopped periods of a play z* is denoted by L(z*). The set
L(z*) can be empty. This happens if already to is stopped. In 4.7 it will be
explained that in the course of a play payoffs are accumulated for unstopped
periods only.
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In order to complete the definition of the choice set function we still have
to describe how the status of a reachable period t changes in the course of
playing the game. For every path of the form u*a* the status x(t,u*a*) of t at
u*a* is recursively defined as follows:

for every preplay u* and every a* E A* (u*). This means that the status of t
at u* is changed by the decisions for t in a* but, of course, only if t is an aim
period of u*. It is clear how the choice set function A*, the preplay set U*,
the preplay set Z*, and the status function x(.;) are determined by the joint
recursive definition given above.

4.6 The probability assignment of the delay supergame

The probability of a random choice ao* at a preplay u* according to the pro-
bability assignment p* of G* may be thought of as the result of independent
random draws according to p for all aim periods in Do(u*) combined with
an independent decision on whether to stop with probability w |u*| or to cont-
inue. In order to make this more precise consider a random choice a,* at a
preplay u* of G*. For every t E Do(u*) let TC’  be the probability

Moreover let π be the product of all xt with t E Do(u*). Then we have:

It can be seen without difficulty that the random stopping requirement
imposed on w in 4.2 secures the random stopping condition of 2.2 for p*.
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In the delay supergame G* payoffs for a play z* are composed of initial
payoffs and of payoffs for unstopped periods accumulated as z* is played:

No payoffs are obtained for a stopped period, in which the random choice was
ω. The choice of ω is thought of as immediately effective in the sense that the
period is stopped already at its beginning.

From what has been explained in 4.5 and 4.6 it is clear that s*, A*, and p*
satisfy the conditions jointly imposed on the start, the choice set function
and the probability assignment of a multistage game. In order to see that G*=
(s*,A*,p*,h*) has all the properties of a multistage game it remains to show
that h* satisfies the boundedness condition of 2.3.

Since G is bounded and K is the maximum length of a play z of G it fol-
lows by the boundedness condition for G that we have

for some constants Co and C1. Let C1 

* be the right hand side of this inequa-
lity and let Co* be the maximum of the |ci|. Obviously h* satisfies the boun-
dedness condition with Co 

* and C1 * in the place of C o and C1 

.
We have now completed the definition of the delay supergame

and we have shown that G* is a multistage game.

4.8 Expected payoffs in delay supergames
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We call b* (t,z) the realization probability of z  in period t under b* and Ft(b*) the
period payoff vector of t for b*. The component F,‘(b*) is player i’s period payoff
of t. Obviously we have:

for every strategy combination b* in G*

4.9 The subgames of a delay supergame

Let s+ be a preplay of G* with |s+| 2 1 and let

be the subgame of G* at s 

+. It can be seen without difficulty that G+ is a delay
supergame of G: The game G+ starts with period t+= t,+ Is+I.  The delay vector
m is the same one as in G*. The stopping rule w + is the restriction of w to the
reachable periods t,+, t,++ l,... . The initial status assignment of G+ is x (.,s+).
The initial payoff vector C+ of G+ is as follows:

5. Relationship between subgame perfect equilibria in bounded multistage games
and their delay supergames

On the basis of the definitions given in previous sections, it will now be pos-
sible to make two statements about the relationship between subgame per-
fect equilibria in bounded multistage games and their associated delay super-
games. These statements provide a precise interpretation of the non-coope-
rative analysis of a bounded multistage game model in terms of its associated
delay supergames.

As before G = (s, A, p, h) will be a bounded multistage game and G*= (s*,
A*, p*, A*) will be one of its delay supergames with the additional
specifications m, w, x (. , s*) , and c.

5.1 Generated strategies

Let b i be a behavior strategy of player i for G. The behavior strategy b i*
generated by bi in G* is defined as follows
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with

for every ai* E Ai (u*). This means that at u* decisions for the aim periods
are chosen by independent draws with the appropriate probabilities specifi-
ed by bi. It is clear that bi* has the properties of a behavior strategy for G*.

We say that b* = ( b1 

*,...,  b n 

* ) is generated by b = (b1 ,..., bn) if for i = 1,..., n the
behavior strategy bi* is generated by bi. Similarly an i-incomplete strategy
combination b-i* is generated by b-i, if the components of b-i* are generated by
the corresponding components of b-i.

The set of all preplays v* of G+ with |v*| = t-to is denoted by Q*. (This defi-
nition is not exactly analogous to that of (2, in 2.7.) The preplays in Q* are
those which are followed by choices at period t. We shall have to look at the
probability that one of these preplays is reached and that then the game is
not stopped in period t. This probability, denoted by W t is the product of the
t-t,+ 1 terms l-w, with ‘t = t,,,..., t. Obviously a payoff for period t is obtained
with probability Wt. Therefore we call Wt the payoff probability of t.

For every reachable period t E R the subgame of G at the initial status x
(t, s*) will be denoted by Gt = (st, At, pt, ht). Of course, st is just another name
for x (t, s*). Let b = (b1,...,b,) be a strategy combination for G and for every
t E R let bt = (blt,...,b,t)  be the strategy combination induced by b on G t.
Moreover let b* be the strategy combination generated by b in G*. Then we
have:

where Ht is the expected payoff function for Gt. This yields

In this way expected payoffs for strategy combinations generated in delay
supergames can be expressed as payoffs in subgames of the underlying boun-
ded multistage game.

5.2 Generated subgame perfect best replies

In this section we prove a lemma which leads to the conclusion that a sub-
game perfect equilibrium generates a subgame perfect equilibrium.
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Lemma 1: Let b = ( b1,..., b n) be a strategy combination for G and let b*
= (b1*,...,bn*) be the strategy combination generated by b in G*. Moreover
let ri be a subgame perfect best reply to b and let ri* be generated by ri in G*.
Then ri* is a subgame perfect best reply to b*.

Proof Let b-i a n d b -i * be the i-incomplete strategy combinations whose
components are in b and b* respectively. Let fi* be any behavior strategy for
G*. We are interested in player i’s period payoffs Fi

t (fi* bi*). As before, Q*
is the set of all preplays v* with |v*| = t-to. For every period t E R, every pre-
play v* E Q*, every preplay u of Gt and every choice ai E Ai(u) let

be the probability with which ai is chosen as player i’s decision for t at the
appropriate place on the path v*. Obviously fiU

v* is a local strategy at u. Let
fT* be the behavior strategy for Gt which assigns these local strategies to the
preplays of Gt. For every preplay v* E Q* let cp (v*) be the conditional pro-
bability that v* is realized by fiv*b.i*  under the condition that a preplay in Q*
is reached. This conditional probability is well defined, since every reachable
period is reached with positive probability. We have:

Since ri is a subgame perfect best reply to b-i we have:

In view of the fact that cp (.) is a probability distribution over Q* this yields

This is true for every reachable period t. Therefore we can conclude that

holds for every strategy fi* for G*. Consequently ri* is a best reply to b*. Since
the subgames of G* are delay supergames, the same argument can be appli-
ed to all subgames of G*. This shows that r* is a subgame perfect best reply
to b*.

5.3 Subgame perfect equilibria generate subgame perfect equilibria

The first main conclusion of this paper is the following theorem.
Theorem 1: Let b be a subgame perfect equilibrium of a bounded multista-

ge game G and let b* be the strategy combination generated by b in a delay
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supergame G* of G. Then b* is a subgame perfect equilibrium of G*.
Proof: The assertion is an immediate consequence of the lemma of 5.2

5.4 Determinate multistage games

A multistage game is called determinate, if it has at least one subgame perfect
equilibrium and if, in addition to this, the set of all its subgame perfect equ-
ilibria is a subgame perfect equilibrium set. In the following we shall intro-
duce some definitions and notations connected to determinate bounded
multistage games.

Let G be a determinate multistage game. Let E be the set of all subgame
perfect equilibria of G. Since G is determinate, E is a subgame perfect equi-
librium set of G. For every subgame Gu of G at a preplay u of G let Eu be the
set induced by E on Gu. Since E is a subgame perfect equilibrium set, Eu is a
subgame perfect equilibrium set, too. Moreover Eu is the set of all subgame
perfect equilibria of Gu. For every preplay u of G let

be the common expected payoff vector H u( bu) for all bu E E,. The game G
itself is a subgame of G at the start s of G. Accordingly e(s) is the common
payoff vector H(b) for all b E E. For the case that u is a play define e(u) =
h(u) . We call e(u) the replacement payoff vector at u and refer to ei(u) as the
replacement payoff of player i.

The name “replacement payoff” suggests itself by the use of which we are
going to make of e(u). For every preplay v of G we construct a truncated sub
game G,. This game Gv results from the subgame Gv as follows: Every subga-
me Gu of Gv with u = va and a E A(v) is replaced by the payoff vector e(u).
This means that all preplays u = va are plays of Gv with the payoff vector

It can be seen without difficulty that a subgame perfect equilibrium bV of Gv

induces an equilibrium on Gv. We shall make use of a simple fact expressed
by the following lemma.

Lemma 2: Let r, = (rVl ,..., rvn) be an equilibrium of a truncated subgame Gv

of a determinate multistage game G. Then we have

where Hv is the expected payoff function of Gv and e(v) is the replacement
payoff vector at v in G.

Proof: Let bv = (b,“,..., bn

v) be a subgame perfect equilibrium of the subga-
me Gv. Let rv be the strategy combination whose components r i

v assign the
local strategy riv to v and agree with bc everywhere else. It can be seen imme-
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diately that rV is a subgame perfect equilibrium of GV. It is also clear that the
payoff vector for rV in Gv is nothing else than the payoff vector for rV in Gv. In
view of the determinateness of G we have

for every preplay v of G.

5.5  Determinateness of bounded delay supergames of determinate bounded multi-

stage games

The following theorem is the second main conclusion of this paper.
Theorem 2: Every bounded delay supergame of a determinate bounded
multistage game is determinate.

Proof: Let G be a determinate bounded multistage game and let G* be one
of its bounded delay supergames. Since G is determinate, G has at least one
subgame perfect equilibrium. Let r be a subgame perfect equilibrium of G
and let r* be the strategy combination generated by r in G*. In view of theo-
rem 1, this strategy combination r* is a subgame perfect equilibrium of G*.
It remains to show that all subgame perfect equilibria of G* form a subgame
perfect equilibrium set. We shall prove this by induction on the number
T-t,+ 1 of the reachable periods to... T of G*.

Consider first the case T-t,,+  1 = 1 in which t,,= T is the only reachable peri-
od. The game ends after the choice combination at to. All plays have the
form s*a with a E A(s*). A strategy combination for G* is a strategy combi-
nation for G,. with v = x( t,, s*). It follows by lemma 2 that the same expected
payoff vector is obtained for all equilibria of G*. Consequently G* is deter-
minate.

From now on assume that the number of reachable periods in G* is grea-
ter than 1 and that the assertion holds for all delay supergames with a smal-
ler number of reachable periods.

As above let r be a subgame perfect equilibrium of G and let r* be gene-
rated by r in G*. All subgames of G* at preplays of the form s*a* with a* E
A*(s*) are determinate since they have a smaller number of reachable
periods. A strategy bi* of a personal player i for G* is called semigenerated by
r if for all preplays v* of G* with Iv*1 > 0 the local strategy assigned to v* is the
local strategy assigned by r*. In view of the determinateness of the subgames
of G* starting with period t,,+ 1 the payoffs in these subgames and their sub-
games do not depend on the particular subgame perfect equilibrium played.
Therefore it is sufficient to show that the set of all equilibria in strategies
semigenerated by r is an equilibrium ser.

It follows by lemma 1 that it is always possible to find a semigenerated sub-
game perfect best reply to a combination of semigenerated strategies for G*.
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It can be seen easily that in the case of a combination of strategies semige-
nerated by r, a subgame perfect best reply can be found among the strategi-
es semigenerated by r.

In order to show that the set of all equilibria in strategies semigenerated
by r is an equilibrium set it is sufficient to look at the following truncated game
G+ of G*. This game G+ results from G* by the replacement of all subgames
at preplays of the form s*a* with a* E A*(s*) by their subgame perfect equ-
ilibrium payoff vectors. This game G+ is a multistage game with only one
stage. The pure strategies of the personal players in G + are their choice sets
A,*(s*). For the sake of shortness we write A i

+ instead of Ai*(s*) for i = 0,...,
n and A+ instead of A* (s*) .

It can be seen immediately that the subgame perfect equilibria in strate-
gies semigenerated by r form an equilibrium set if the set of all equilibria of
the truncated game G+ is an equilibrium set. It remains to show that this is
the case. For this purpose we shall look at the expected payoff H+(a*) for a
choice combination a* E A+. Let N+ be the set of players active at s* in G*.
For i = O,..., n let Di

+ be the aim period set Di(s*) and let D+ be the aim peri-
od set D(s*).

Let a* E A* be a choice combination. For every i E N+ let ai* be the choi-
ce of i in a* and for every t E D,+ let ait be the decision for t specified by ai*
and at the decision combination specified by a* for t. After the choice of a*
every reachable period has the status x (t,s*a*) Later decisions for t are
made with the probabilities required by r. Therefore the expected period
payoff vector of t for a* is e(x(t,s*a*)) multiplied by W t. This yields

We have

The period payoff vectors for t E R \ D+ do not depend on a*. Let J be the
sum of all these period payoff vectors and c. We obtain

Let f = (f1,..., fn) be a strategy combination for G+. For every i E N+, every t
E D+, and every ait E A,(x(t,s*))  let fit(ait)  be the probability that a choice ai*
is taken by fi which specifies ait as the decision for t. The function fi

t defined
in this way is a behavior strategy for the truncated subgame of G at x(t,s*).
The symbol Gt is used for this game. Let P = (flt,...,f,t) be the strategy com-
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Let f = (f1,..., fn) be a strategy combination for G+ . It will now be shown that
the following is true: if f is an equilibrium of G+, then for every t E D+ the
strategy combination f’ must be an equilibrium of Gt. In order to see this,
suppose that for one t E D+ this is not the case. Then in G t one personal play-
er i has a pure best reply &I which yields a better payoff against the strategi-
es of the others in f’ than fit does. If this is the case, player i can improve its
payoff by the following change of behavior: If f i selects a choice ai* which
does not specify ii for t, then the choice specified by ai* for t is replaced by
-tai and the changed choice resulting from ai * in this way is taken. Otherwise
the behavior prescribed by fi remains unchanged. The behavior strategy gi

thereby obtained improves player i’s period payoff for t and lets other peri-
od payoffs of player i unchanged.

It is a consequence of the determinateness of G that for every t E D+ the
set of all equilibria of Gt is an equilibrium set. Otherwise it would be possi-
ble to construct two subgame perfect equilibria of the subgame Gt at x(t,s*)
of G with different payoff vectors. We can conclude that the set of all equili-
bria of G+ is an equilibrium set. This completes the proof of the theorem.

6. Discussion

After the concepts and conclusions of this paper have been made precise
their significance for economic theory will be discussed in this section.

6.1 The relationship between multistage games and their delay supergames

Multistage game models often do not really aim at one shot strategic inter-
actions in which stage decisions are made once and for all in a strict tempo-
ral order, but rather ongoing situations, in which decisions represented as
made at earlier stages are thought of as more long term than those made on
later stages. What is the essential difference between more long term and
more short term decisions? It has been argued in the introduction that in
many cases the distinguishing feature seems to be the length of the delay
until a decision becomes effective. The formal elaboration of this idea leads
to the notion of a delay supergame of a multistage game.

Of course, other differences between more long term and more short
term decisions may also enter the picture in specific applications. It is not
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clear to what extent additional distinguishing features like greater change
costs for more long run decisions would force us to modify our conclusions.
This is a question which needs to be explored with the help of more general
dynamic game models associated to multistage games. No attempt in this
direction can be made here. The conclusions drawn in this paper cannot
claim to achieve more than a precise interpretation of subgame perfect equ-
ilibria in multistage game models which do not permit a direct temporal
interpretation of the order of stages. In this way the gap between model and
reality is not closed, but maybe diminished or at least illuminated.

6.2 Consequences of the assumption of full rationality

In the remainder of the paper we shall always look at a bounded multistage
game and one of its delay supergames. We first discuss the consequences of
the assumption that the delay supergame is played by fully rational players
with common knowledge about its rules. In the case of a unique subgame
perfect equilibrium set of the multistage game and a bounded delay super-
game, theorem 2 yields the conclusion that the behavior to be expected in
the delay supergame is essentially correctly described by the perfect equili-
brium set of the multistage game. In this case not all subgame perfect equi-
libria of the delay supergame are generated by those of the multistage game,
but this does not matter as far as payoffs in the whole game and all its sub-
games are concerned.

In all other cases we cannot say more than what has been shown by theo-
rem 1. Every subgame perfect equilibrium of the multistage game generates
a subgame perfect equilibrium of the delay supergame. In addition to this
the delay supergame may have many other equilibria some of which may
yield higher payoffs for all players. In such cases the non-cooperative analy-
sis of the multistage game fails to reveal the potential for quasicooperative
subgame perfect equilibrium behavior in the delay supergame. This raises a
problem with respect to the interpretation of subgame perfect equilibria of
the multistage game.

6.3 The finiteness argument

An upper bound, say a million years, can be named for the survival of any
economic situation. Therefore unbounded delay supergames should be loo-
ked upon as simplified descriptions of long lasting ongoing situations of fini-
te duration. Conclusions which rest on the feature of unboundedness cannot
be taken seriously. In this way the non-cooperative analysis of a multistage
game with a unique subgame perfect equilibrium set can be defended as a
satisfactory substitute for the full treatment of the delay supergame.
However, is this argument really valid? Experimental results clearly show, that
experienced players cooperate in 10-period supergames of the prisoner’s
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dilemma game until shortly before the end (Selten and Stoecker 1986) in
spite of the fact that this is excluded by subgame perfect equilibrium.

6.4 Slightly incomplete information

In order to deal with the phenomenon of cooperation in finite prisoner’s
dilemma supergames without an essential relaxation of rationality assump-
tions one can take the point of view that the supergame is not the game real-
ly played, and that instead of this the players are involved in an similar, but
different game. Kreps, Wilson, Milgrom and Roberts (1982) assume that with
a small probability a player may be of a different type, with preferences which
make it profitable to take the cooperative choice as long as the opponent has
been observed to do this. The introduction of such types transforms the
supergame to a game with slightly incomplete information, and thereby
opens quasicooperative opportunities similar to those in the case of infinite
repetition.

The approach of Kreps, Wilson, Milgrom and Roberts (1982) is not a con-
vincing explanation of the experimental evidence. If cooperation in the fini-
tely repeated prisoner’s dilemma were the result of sophisticated rational
deliberation, then it should be observed already in the first supergame play-
ed and not only after a considerable amount of experience as it happens in
our experiments (Selten and Stoecker 1986). Kreps and Wilson (1982) have
applied the same incomplete information approach to the chain store para-
dox (Selten 1978). Here, too, the experimental evidence points in a diffe-
rent direction (Jung, Kagel, and Levin 1994). The bounded rationality
approach of my (1978) paper seems to be in better agreement with the data.

6.5 Institutional reasons for the absence of cooperation

From what has been said up to now, it is clear that, even if the assumptions
of theorem 2 are satisfied, we cannot rely on the descriptive validity of the
non-cooperative analysis of the multistage game as a substitute for the full
treatment of the delay supergame. However there may be institutional rea-
sons for the exclusion of cooperation or subgame perfect quasicoope-ration
in the supergame.

Consider the case of an oligopoly in an economy with strictly enforced car-
tel laws and assume that the oligopolistic market is adequately modelled as a
delay supergame of a bounded multistage game. Presumably the cartel laws
forbid collusion, but what does this mean? Obviously the cartel laws cannot
simply demand that a subgame perfect equilibrium of the delay supergame
is played. This may fail to exclude subgame perfect quasicooperation.

It seems to be natural to define the absence of collusion as a state of affairs,
in which a subgame perfect equilibrium of the delay supergame is played
which is generated by a subgame perfect equilibrium of the underlying mul-
tistage game. If the absence of collusion in this sense is effectively enforced,
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then the non-cooperative analysis of the multistage game is a satisfactory sub-
stitute for that of the delay supergame.

However, against this argument the objection can be raised, that it remains
unclear, how the cartel laws are enforced. Presumably the enforcement agen-
cy does not have the same knowledge of the market which is available to the
oligopolists. The same may be true for the court to whom the oligopolists can
appeal in the case of a disagreement with the cartel authority. It would be
desirable to model the cartel authority explicitly as a player in order to throw
light on its strategic interaction with the oligopolists.

In an open oligopoly collusion may have the disadvantage that new
entrants are attracted by high profits. This may have the effect that after the
entry of new competitors the profits of the incumbents achieved by collusion
are lower then they would have been without entry in the absence of collu-
sion. In a paper with the title “Are cartel laws bad for business” (Selten 1984)
I have presented a multistage game model which yields the conclusion that
under plausible conditions about the distribution of the market parameters
total profits of all firms in the economy are increased by effectively enforced
cartel laws compared with a situation in which cartels can be legally formed.
This effect is due to excessice entry in the absence of cartel laws. Thus the
task of the cartel authority may be facilitated by an economy wide advantage
for industrial enterprises, even if the firms on some markets would gain by
the possibility of legal cartel formation.

6.6 An adaptive interpretation

Experimentally observed behavior is only boundedly rational and the same
must be expected of the behavior of firms in real markets. Research on the
behavioral theory of the firm (Cyert and March, 1963; Earl, 1988) provides
ample evidence for this. In the following I shall try to present some tentative
ideas on the consequences of bounded rationality for the interpretation of
subgame perfect equilibria of multistage game models and those generated
in their delay supergames. Admittedly my remarks in the remainder of the
paper will be sketchy and speculative. No attempt is made to support them
by a thorough examination of the relevant experimental literature.

Experimental subjects do not compute the solutions of complex optimi-
zation tasks in order to make their decisions. Apart from very simple cases it
cannot be expected that subgame perfect equilibria are found by rational
deliberation. However this does not mean that such equilibria are irrelevant
for the prediction of behavior. In repetitive experimental settings equilibria
can be learned by adaptation to past experience.

The experimental literature on double auction markets initiated by Vernon
Smith (1962, 1964) provides a well known example. Usually competitive equ-
ilibrium is reached after a relatively small number of identical repetitions of
the same market. The traders do not compute the equilibrium price.
Convergence to competitive equilibrium is the result of an adaptive process
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which adjusts bids and asks to observed imbalances of supply and demand.
The double auction is a very complex game with incomplete information.

Behavior does not converge to an equilibrium of this game, but rather to an
equilibrium of a fictitious associated game with complete information, in
which reservation prices and resale values of all traders are publicly known.
Something similar can be observed in Cournot oligopoly experiments in
which the producers are not informed about the costs of their competitors
(e.g. Sauermann and Selten 1959). It is my impression that convergence to
an equilibrium of the fictitious complete information game, which would be
played if all private information were public, is favored by the incomplete
knowledge about the other players’ payoffs. This lack of knowledge hides the
quasicooperative opportunities of the complete information game.

In a bounded multistage game played just once, with stages following each
other in temporal succession, adaptive adjustment processes cannot work.
This is different in sufficiently long delay supergames. Here players repea-
tedly face the necessity to adapt their decisions on all stages. There is a good
chance that, under favorable conditions, subgame perfect equilibria genera-
ted by those of the underlying bounded multistage game, are learnt by expe-
rience. Conditions are favorable, if the game which is played is not really the
delay supergame but a modified version with reduced payoff information in
the following sense: The players have little knowledge about the other play-
ers’ payoff functions and do not observe their payoffs. However as in the
unmodified delay supergame they do observe the other players’ past choices
and they know their own payoff functions.

My thoughts about the descriptive relevance of the non-cooperative analy-
sis of multistage game models can be summarized by the following hypothe-
sis: Learning in a modified delay supergame with reduced payoff information conver-

ges to behavior in agreement with the predictions derived from a subgame perfect equi-

librium of the underlying multistage game, the more so, the less the players know about

other players’ payoffs.

It is necessary to run experiments specifically designed to test this hypot-
hesis. If the hypothesis succeeds to survive the tests, it will provide descripti-
ve content to the non-cooperative analysis of multistage game models.

6.7 Non-monetary motivation

The hypothesis stated above may have to be weakened in several directions.
One difficulty which may arise is the influence of non-monetary motivation.
The monetary payoffs offered in an experimental game are often not the
only motivational factors present. The ultimatum game has an obvious sub-
game perfect equilibrium, if only monetary payoffs are considered, but non-
monetary motivational forces make it unacceptable for the recipient of the
ultimatum (Güth, Schmittberger and Schwarze, 1982; Güth and Tietz 1990).
In the case of the ultimatum game the motivational force is resistance to
unfairness.
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Another motivational factor is clearly visible in an experimental labor mar-
ket (Fehr, Kirchberger and Riedl 1993). A reciprocity norm induces employ-
ees to supply more effort than they have to as a voluntary reward for high
wages, in a situation which excludes reputation effects by the experimental
set up. This results in considerable deviations from competitive equilibrium.

Much more could be said about the experimental evidence for non-mone-
tary motivations, but this will not be done here. Interestingly resistance to
unfairness and reciprocity both depend on at least some knowledge of the
other player’s payoff. A lack of such knowledge does not only hide quasi-
cooperative opportunities but also weakens the force of social norms which
facilitate non-equilibrum cooperation. However, one cannot expect that it
will always be possible to ignore the influence of non-monetary motivational
forces on behavior in modified delay supergames with reduced payoff
information.
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