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Black Holes, Cosmology and 
Space-Time Singularities
Nobel Lecture, December 8, 2020 by
Roger Penrose
University of Oxford, Oxford, United Kingdom.

in 1908 hermann minkowski introduced the idea of space-time, 
which is a 4-dimensional space that encapsulates pretty well all of Ein-
stein’s 1905 theory of special relativity. At first, Einstein didn’t like the 
idea very much. He initially thought it was just mathematical sophistry or 
something like that, but subsequently he picked up on it, realizing the 
power of the 4-dimensional geometrical perspective, and it became cen-
tral to its generalization to Einstein’s general theory of relativity. In Fig. 1, 
I have indicated three coordinate axes for ordinary 3-dimensional space, 
but in Fig. 2, we move on to introduce a time axis to describe 4-dimen-
sional space-time.

Figure 1.              Figure 2.   Figure 3.
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Now, the most important thing about this description is to represent 

the speed of light, so in Fig. 3 we have a light ray (or photon history) 
where, in order that it does not simply almost lie along the spatial “floor”, 
we need to choose space and time units so that the light ray can be repre-
sented as tilted at some reasonable angle to this “floor”, such as at ~45°. 
In Fig. 4 we can depict the null cone, which represents all the space-time 
directions of light rays through our chosen origin point. These cones are 
very important for the structure of space-time, and we shall frequently be 
concerned with the null cones themselves rather than with any particular 
light ray (Fig. 5). Moreover, we need not be concerned with the choice of 
axes either (Fig. 6). What is physically important is this null cone itself, at 
each point of the space-time.

In general relativity we likewise have a null cone at each point of a 
(now curved) space-time, representing the local speed of light at each 
space-time point, but the cones can be more or less all over the place (Fig. 
7). We can imagine a space-time point p with all the light rays coming out 
of p. In Einstein’s general theory of relativity, these light rays are geomet-
rically what are called null geodesics. In what follows, we shall refer to 
these null geodesics simply as rays. When these rays are extended out-
wards into the future, away from p in the space-time, we get what is 
called the future light cone of p (Fig. 8). The null cones would be tangent to 
this light cone wherever it goes. But, as you can see at the back, at the top 
right-hand side of Fig. 8, the light rays may start to cross each other, and 
this sort of thing can make light cones complicated. However, it is impor-
tant for what I am going to discuss shortly that you appreciate how to 
deal with such things. In general situations, you certainly are likely to get 
such crossover regions, caustics and things like that, and how to deal with 
them is a central feature of the following discussion.

Figure 4.                  Figure 5.   Figure 6.
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Now, let us consider the next picture (Fig. 9), where we see a space-
time depiction of what is, in effect, the Oppenheimer-Snyder (O-S) evo-
lution of the collapse of a dust cloud to what we now refer to as a black 
hole – although that particular aspect of Fig. 9 was not something that 
was properly appreciated in 1939, when J. Robert Oppenheimer and his 
student Hartland Snyder published their paper [1]. What they were con-
cerned with was the behaviour of the material body, indicated in the 
central lower part of Fig. 9, depicted as falling inwards (as we move up 
the picture to express the passage of time). This gravitationally collaps-
ing material was to be what is referred to as “dust”, which simply means 
a fluid material with no pressure. These authors had been considering 
how a very massive individual star might behave, according to Einstein’s 
general relativity, in the star’s late stages, when nuclear energy and 
other relevant resources would have become exhausted so that the 
material’s pressure would become too small to be able to prevent the 
star’s collapse. Whereas such an idealization of the gravitational col-
lapse of an individual star need not be regarded as particularly realistic, 
such a picture might also be applied to much larger collections of mate-
rial where, in its outer regions at least, the “dust” approximation is not 
at all unreasonable.

It should be mentioned that this collapse phenomenon had been 
encountered much earlier, initially by Subrahmanyan Chandrasekhar [2], 
in his 1931 discussion of white dwarfs, where he had calculated that such 
a star, when it had cooled off, would not be able to sustain itself (by its 
electron degeneracy pressure) if its mass were greater than around 1½ 
times the mass of the sun, and his considerations are now, not unreasona-
bly, considered to constitute the “birth” of the idea of the plausible exist-
ence of what we currently refer to as “black holes”. Nevertheless, in my 
considerations here, I shall refer only to the O-S picture, simply because 
with the very much larger collections of material that will be our main 
concern, gravity will be the dominant physical interaction, and such 

Figure 7.                  Figure 8.   Figure 9.
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things as nuclear forces and degeneracy pressure become unimportant, so 
that the simpler O-S picture suffices for our purposes. 

The collapse is taken to be exactly spherically symmetrical, in the O-S 
situation, so that all the matter falls directly inwards towards the central 
point, where the material’s density becomes infinite, in this idealization, 
so the space-time curvature must also become infinite, in accordance 
with Einstein’s general relativity. According to the picture of Fig. 9, 
depicted above where the infalling material is represented, we see this 
singularity to be extending further upwards, i.e. maintaining its existence 
with respect to an external time measure, so even in the vacuum region of 
the picture, we appear to have to maintain the singularity, long after the 
material has seemed to be absorbed into the singularity. It does not 
appear that Oppenheimer and Snyder were particularly concerned with 
such an aspect of their collapse picture – i.e., with the apparent future of 
the vacuum region following the collapse – but it is, indeed, a matter that 
we shall shortly need to address in a serious way.

Although the O-S picture of such a gravitational collapse might well 
not be considered to be altogether realistic under general circumstances, 
the space-time picture of Fig. 9 can nevertheless be regarded as providing 
us with a reasonable first impression of the kind of situation that might 
well arise, at least in the early stages of a large-scale gravitational col-
lapse, before the effects of departure from spherical symmetry and the 
presence of pressure may indeed begin to have significant implications. It 
is thus important to know what aspects of this picture might or might not 
be expected to be maintained under more general circumstances. 

The O-S idealized description of a gravitational collapse was fairly well 
appreciated at the much later time when quasars were discovered in the 
early 1960s, these bring extra-ordinarily powerful very distant sources of 
radio signals, and theorists then started to speculate as to whether there 
might be something like an O-S collapse involved, yet without the under-
standably gross simplifications of spherical symmetry and pressure-free 
material, assumed in the O-S situation.

My own acquaintance with the kind of space-time geometry that is 
required for this O-S collapse picture had occurred somewhat earlier than 
this, namely in 1959, when I was a mathematics Research Fellow at St 
John’s College Cambridge. In January 1959, I had not yet become aware of 
the O-S paper, but I went to a lecture by David Finkelstein, given at King’s 
College London, accompanied by my good friend and mentor Dennis Sci-
ama, from whom I had learnt a good deal of relevant physics. He drove me 
there from Cambridge, having encouraged me that the talk would be 
interesting to me. Finkelstein’s seminar described how you can smoothly 
pass through what had then been referred to as the “Schwarzschild singu-
larity”, a feature occurring at a certain radius out from the centre, accord-
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ing to the well-known spherically symmetrical Schwarzschild solution of 
Einstein’s vacuum equations, for the external gravitational field of a 
spherically symmetrical body. This radius is:

r = 2m

in units where the speed of light c and the gravitational constant G are 
both chosen to have the value unity:

c = 1, G = 1.

(Without this choice of units, we have r = 2Gm/c2.) In the coordinate 
description that Schwarzschild had used, we find that a metric compo-
nent indeed becomes infinite, and this cannot be avoided in the seemingly 
very reasonable time-symmetrical description adopted by Schwarzschild.

Karl Schwarzschild had found this very basic solution of Einstein’s 
vacuum equations in 1916, not long after Einstein introduced his general 
theory of relativity in 1915. Schwarzschild had solved the equations of 
Einstein’s general relativity for the vacuum gravitational field outside a 
spherically symmetrical body. He also provided a solution for the material 
of the body itself, but that was not an altogether realistic material, and is 
not important for our discussion here.

In fact, the top part of Fig. 9, depicting the situation arising after all the 
actual matter has disappeared, apparently all having been absorbed into 
the central space-time singularity, depicts essentially what Finkelstein 
described, where you see a portion of the Schwarzschild vacuum space-
time, but in a coordinate description that allows a smooth extension to 
within the r = 2m Schwarzschild radius. Such a situation was described 
by Finkelstein in a coordinate description that allows for a non-singular 
extension of the space-time to within the Schwarzschild radius of r = 2m, 
thereby allowing a description for which the infalling material can be seen 
as actually falling smoothly through the r = 2m Schwarzschild radius that 
had appeared to be a singularity in Schwarzschild’s original description.

Indeed, the description shown in Fig. 9 was not the one presented by 
Schwarzschild’s choice of coordinates, his reasonable-seeming choice 
providing a static, time-symmetric picture, which would not allow the 
inward-tilting null cones that we see at this radius in the upper part of 
Fig. 9. Instead, as remarked previously, the expression that Schwarzschild 
obtained becomes infinite at the Schwarzschild radius r = 2m, so that the 
term “Scharzschild singularity” is now seen to be inappropriate. Finkel-
stein, in his talk, provided a coordinate change to obtain an elegant 
time-asymmetric form [3] that extended the solution inwards to values of 
the radius r that lie in the full range
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0 < r < ∞,

the metric form remaining perfectly smooth across r = 2m. This 
“Schwarzschild radius” now describes the upper cylinder of Fig. 9, where 
the inward tilting null cones become tangential to this r = 2m cylinder. 
Clearly, the tilting of the cones presents a time-asymmetric description at 
that radius, which explains why Schwarzschild’s time-symmetric assump-
tion leads to what appears to be a singularity, rather than the horizon that 
was made evident by Finkelstein’s choice of coordinates, and which 
describes the situation of the upper part of Fig. 9.

It should be pointed out that in the early days of general relativity, vari-
ous other theorists – going back to Painlevé in 1921 [4] − had also found 
coordinate changes that could eliminate this Schwarzschild singularity, 
but most did not fully appreciate the physical implications of the “hori-
zon” character of this Schwarzschild radius. Most noteworthy among 
those who did properly appreciate this physical situation was Abbé 
Georges Lemaître [5], who understood that infalling material could cross 
r = 2m into an interior region, consistently with the situation depicted in 
Fig.9.

I came away from Finkelstein’s lecture thinking that, whereas by a 
suitable coordinate choice you can – somewhat remarkably – get rid of 
this “Schwarzschild singularity”, located at a certain distance 2m out 
from the centre, you nevertheless still have a genuine singularity in the 
middle (at r = 0) where space-time curvatures become infinite, so no 
coordinate change can help. Accordingly, I began to wonder whether 
there might perhaps be a general theorem, or something like that, which 
showed that whatever you might do to complicate the space-time met-
ric, to describe a similar but very irregular collapse situation, you might 
still have to get a genuine singularity. I had not heard of any such theo-
rem, nor did I have any idea how one might prove such a thing, so I 
started to think to myself: “what might I know, plausibly relevant to 
general relativity, that maybe other people in the field don’t generally 
know much about – so possibly this could be helpful to me to achieve 
something along these lines, that theorists working in the field seem not 
be familiar with?” 

The area that I thought might be helpful was the theory of 2-component 
spinors. I should explain that I finally understood properly about 
2-spinors from lectures by the great quantum physicist Paul Dirac, earlier 
in the spring of 1958, in the academic year before Finkelstein’s lecture. 
Dirac’s course was basically on quantum field theory, but he appeared to 
have deviated from his normal course when he talked about 2-spinors. He 
was famous for discovering the dynamical equation for the electron, but 
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this originally involved the introduction of 4-spinors. However, you can 
break each of them down into a pair of 2-spinors and Dirac had become 
well acquainted with this fact, having written an important paper [6] 
describing higher-spin fields in these terms. Yet, these techniques were 
not very familiar to most physicists at that time. I had myself heard of 
2-spinors and had been intrigued by them, but I did not really understand 
them until Dirac’s lectures had made them abundantly clear to me!

So, soon after Finkelstein’s lecture, I began to wonder whether 2-spinor 
theory might be something I could apply to general relativity, which pos-
sibly might supply me with certain significant insights into general relativ-
ity that were, perhaps, unfamiliar to most theorists working in the field. 
But for this I needed to have a clear geometrical way of thinking about a 
2-spinor. How was this to be achieved?

Figure 10. 

In Fig. 10 we have a geometrical picture representing this remarkable con-
cept. On the right-hand side of the picture (Fig. 10b) I have, in effect, 
depicted a 2-spinor in space-time terms, but this needs some clarification. 
On the left-hand side of Fig. 10 (10a), we see the celestial sphere S – 
although it is better to think of this as the future celestial sphere, rather 
than the past one (i.e. where light rays go to, rather than where they come 
from), and Fig. 10b depicts the different directions in which the 2-spinor’s 
“flagpole” can point, this flagpole being a future-pointing null vector. We 
must bear in mind that there needs to be an additional spatial dimension 
in the picture of Fig. 10b, so that the bounding “ring” at the top is actually 
a sphere S, as in Fig. 10a. The 2-spinor also has a little flag attached to this 
null vector, whose plane touches this sphere S and determines the 
2-spinor’s phase (Payne [7], Penrose and Rindler [8]). We have to bear in 
mind that the upper ring in Fig. 10b is actually a sphere, so there is a free-
dom for the flag plane to rotate while still touching the sphere, because of 
the extra dimension, and it is better to refer back to Fig. 10a, where we 
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note that the direction of the flag plane corresponds to a tangent vector ε 
on the spere S of Fig. 10a, corresponding to the direction towards ṕ, out 
from p in Fig 10b. The “spinorial” nature of this flag corresponds to the 
fact that a rotation of the flag through 360° changes the 2-spinor’s sign, 
while a 720° rotation returns it to its original value. 

The important thing about using the 2-spinor formalism in general rel-
ativity, for our purposes, is that it provides us with some insights about 
space-time curvature that are not so evident in the standard tensor for-
malism. Most particularly, there is a particular part of the space-time cur-
vature, referred to as the conformal curvature, that is determined by a ten-
sor quantity referred to as the Weyl curvature tensor, named after the 
highly esteemed mathematician Hermann Weyl. The Weyl tensor is 
defined from the full Riemann curvature tensor by a somewhat compli-
cated-looking formula, but the 2-spinor formalism brings out an essential 
simplicity of the Weyl curvature that is not at all evident in the conven-
tional tensor formalism.

It is not my purpose, here, to provide explicit expressions for all the 
tensor or spinor expressions for the quantities that are involved, these 
making use of the delicate interplay between tensor and spinor indices, 
often involving the metric tensor in its very elementary spinor form. The 
details of these algebraic manipulations are, of course, important, and are 
ultimately based on fundamentally simple rules [9], [8], but it is not nec-
essary for us to go into this in detail here.

The Riemann curvature tensor, when written in its 2-spinor form, 
splits into three parts, one of which is the spinor form of the trace-free 
Ricci tensor, another being the trace of the Ricci tensor (namely the scalar 
curvature), and the third part being the spinor form of the Weyl tensor. 
Einstein’s field equations, when expressed in 2-spinor form, effectively tell 
us that the spinor form of the trace-free Ricci part plays a role as a source 
of the gravitational field, the latter being described by the spinor form of 
the Weyl tensor, this “Weyl spinor” describing the free gravitational field. 
There is a strong analogy with electromagnetism revealed here, where the 
Ricci tensor (really in trace-reversed form) is analogous to the 
charge-current vector of electromagnetism, the Weyl spinor being analo-
gous to a “Maxwell spinor”, which is the spinor form of the Maxwell field 
tensor, which describes the free electromagnetic field. This analogy is 
made much more evident in the 2-spinor form than in the tensor form.

Indeed, in the 2-spinor formalism, we find a particularly simple expres-
sion for the Weyl curvature, which is not at all evident in the tensor for-
mulation. We find that this “Weyl curvature spinor” is a 4-index 2-spinor 
which is totally symmetric in all its four 2-spinor indices, and it satisfies a 
very simple free-field equation in vacuum, where there are no gravita-
tional sources (vanishing Ricci tensor). This is strikingly analogous to 
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Maxwell’s electromagnetic theory in 2-spinor form, where the spinor 
form of the Maxwell field tensor is a 2-index 2-spinor which is symmetric 
in its two 2-spinor indices, and it satisfies the completely analogous free-
field equations when the charge-current vector vanishes [9], [8]. All this 
fits in closely with a general study, made by Dirac in 1936, of field equa-
tions for fields of arbitrary spin, written in 2-spinor form. (Curiously, I 
once had a private discussion with Dirac, when I explained to him how 
Einstein’s gravitational theory fits in with the other spin fields in Dirac’s 
own 2-spinor analysis of higher-spin fields [6]. He had not been previ-
ously familiar with this aspect of Einstein’s theory, and he found it inter-
esting.)

Figure 11. 

In order to appreciate the geometrical effect of the Weyl and Ricci cur-
vatures, we can have a look at Fig. 11. This depicts an observer, located at 
the top of the picture, looking back into the past and sees the inward 
focusing effect due to the trace-free Ricci curvature (behaving like an 
ordinary positive convex lens), and also sees the distortion due to the 
Weyl curvature W (like a purely astigmatic lens). In this way, we see the 
direct roles of the (trace-free) Ricci curvature and the Weyl curvature in 
their effects on light rays. The trace-free Ricci tensor acts as a lens which 
is positively focusing (like an ordinary magnifying lens) when the energy 
flux across the light ray is positive. (The trace part of the Ricci tensor, 
being proportional to the metric tensor, does not affect light rays.) 

A few years after my time as a Cambridge Research Fellow, the quasars 
(“quasi-stellar objects”) were being discovered, this being around 1962–
1964. These objects were producing enormous quantities of energy and 
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yet they seemed to be remarkably small, considering this output. They 
appeared to have an energy output of perhaps 100 to 1000 times an entire 
galaxy’s emission, but yet they seemed to vary substantially in a few hours 
or days, which meant that they had to be very small compared with a gal-
axy, probably not larger than the solar system, but would have to be 
extremely massive to emit so much energy. How could all that mass-en-
ergy be squashed into that small volume? Astrophysicists, such as Fred 
Hoyle, started to speculate upon whether something gravitationally con-
centrated as in the O-S collapse might be relevant. But when you think 
just of a collapse that falls radially inwards, it doesn’t give you any scope 
for signals coming out. If you were to have any involvement of gravita-
tional waves, these would need to have at least a quadrupole structure. 
Moreover, the highly varying nature of the radio signals suggests that 
something very complicated must be involved. Certainly, the possibility of 
a very irregular gravitational collapse must be considered, which could be 
very different from the O-S picture of matter falling radially inwards. Per-
haps material falling inwards in a complicated way might swirl round an 
come out again. Such possibilities had been suggested to me by John 
Wheeler and others, so I began to think again about such matters as a 
general gravitational collapse, in a serious way.

At around that time, in 1963, there had been a paper published by two 
Russians, Lifshitz and Khalatnikov [10], which seemed to have estab-
lished that in general you would not get singularities, these occurring only 
in very special circumstances such as in the particular O-S collapse pic-
ture. Accordingly, in a physically realistic situation you might indeed con-
sider that in a generic collapse the material would indeed just swish 
around and come swirling out again. As part of my worries about this 
problem, I had a good look at the Russians’ paper. In fact, there was actu-
ally a serious mistake in the paper, but I didn’t examine it carefully 
enough to notice that. What I did feel, however, was that the methods 
they were using were not altogether convincing to me, and that it was 
worth trying to think independently about whether or not you would get 
singularities in a generic gravitational collapse.

I remember walking in the woods near where I lived at the time, in 
Stanmore at the north of London, and trying to imagine that I was in the 
midst of such a gravitationally collapsing situation, I came to the conclu-
sion that it could not just be a local curvature blow-up, but it had to 
involve a build-up of curvature due to some overall excessiveness of the 
material concentration. Some kind of non-local criterion would be 
needed to tell you that a “point of no return” had, in an appropriate sense, 
been passed.
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A few weeks later, I hit upon the idea of a “trapped surface” which 

seemed to supply the kind of non-local criterion that I was looking for. 
The picture you see in Fig. 12 is a diagram that subsequently appeared in 
my 1965 paper [11], though a little earlier, in late 1964, I gave a talk at 
King’s College London about it. The argument was that if you have a col-
lapse which is generic, but in which you happen to have a trapped sur-
face, then you will still have problems with singularities even though the 
infalling material would not be all aimed at a central point. In Fig. 12, you 
see what is basically the O-S collapse of Fig. 9, but you can also see that 
there is this little ring in the middle of the picture, marked S2 (=T2) sur-
rounding the infalling matter. This is a trapped surface, and you have to 
realize that it is not actually a “ring” because I am only depicting two spa-
tial dimensions, together with the time dimension and (as with Fig. 10b) 
the whole thing should actually be a 4-dimensional space-time, so that 
the “ring” is really a 2-dimensional surface, topologically like an ordinary 
sphere. In a general collapse, it might be distorted, not necessarily being a 
precise geometrical sphere.

 

Figure 12. 
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Figure 13. 

Figure 14. 
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But what exactly is a trapped surface? You have to imagine that there is 
a flash of light emitted simultaneously all over that surface and that this 
flash has a certain characteristic property. In the lower middle part of Fig. 
13, you see a little 2-dimensional spatial surface element and you are to 
imagine that the surface emits a flash of light, which moves directly away 
from it in opposite directions, represented by light rays in the 
4-space-time-dimensionally indicated top part of the picture. In Fig. 14, at 
the top left (Fig. 14a), we have a curved surface element which is concave 
on one side, where the light-flash rays from it are converging, and convex 
on the other side, with light-flash rays which diverge. That would be a 
normal thing for a curved surface element. Now, on the top right (Fig. 
14b) you have something that’s harder to imagine, namely that light-flash 
rays can converge on both sides. This is what we need for a trapped sur-
face. In fact, in space-time terms, this is not really a problem for a curved 
surface element. At the bottom (Fig. 14c) you see a situation in ordinary 
flat (Minkowski) space-time, where the surface is the intersection of two 
past light cones (with vertices P and Q) and, indeed, the light flashes com-
ing from both sides of such a surface element would indeed be converg-
ing. The definition of a trapped surface S2, however, is that it is a compact 
spacelike 2-surface which has this both-way converging property occurs 
all over the surface S2. The essential compactness condition means that it 
is closed up without any boundary (like an ordinary sphere, but which 
could be distorted in various ways without disturbing its topology). Thus, 
each point of this S2 is locally like the intersection surface of Fig. 14c (i.e. 
like Fig. 14b) which, in itself, would present no problem, but what makes 
it the problematic “trapped” surface is that it is also compact, a feature 
that would certainly be the case for rotationally symmetrical 2-surfaces 
within the Schwarzschild horizon of Fig. 9.

A key aspect of this definition is that it is stable under small deforma-
tions. Because of the compactness of the surface S2, if we were to vary the 
situation very slightly, the degree of the convergence of light rays moving 
out orthogonally away from S2 must still be bounded away from zero, for 
a small-enough change in the geometry of the situation. Accordingly, a 
small-enough generic perturbation away from the spherically symmetri-
cal case will not disturb the “trappedness” of the 2-surface S2. We can 
certainly have many generic collapse situations in which a trapped sur-
face indeed arises.

The next question for us is: why does the presence of a trapped surface 
cause us a problem? We need to consider that the trapped surface S2 lies 
in a space-time region M+ that is the future time-evolution away from a 
non-compact spacelike 3-surface C3. (We are thinking of a reasonably local 
phenomenon, not a cosmological one for which we might, on the other 
hand, actually want C3 to be some compact spacelike 3-surface.) We shall 
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be concerned with the region F4 (shown shaded in Fig. 12), within the 
future evolution of C3, which is the chronological future of S2 [12], [13] 
That is to say, F4 is the region swept out by (i.e. the union of) all the time-
like curves with past end-points in S2. What we are particularly con-
cerned with is the boundary B3 of F4.

It follows from general results (see [12], [13]) that any point p of B3, not 
on S2, is the future end-point of a ray (i.e. null geodesic) lying on B3 which 
is either past endless or else has a past end-point on the initial region S2. 
The past-endless case is anomalous, because it implies that the region M+ 

is not a standard time-evolution away from C3, since it contains rays that 
wind endlessly into the past without ever reaching the initial surface C3. It 
would not be unreasonable to regard such a departure from normal cau-
sality as “singular” behaviour, and no less anomalous than regions where 
the space-time curvature diverges to infinity. Accordingly, I shall here 
refer to such anomalous space-times as being “singular” whether or not 
their “incomplete” status actually arises from a curvature divergence.

We have just seen that the boundary B3 of F4 consists entirely of rays, 
and if M+ is to be non-singular in the above sense, then all these rays 
have past end-points on S2, but what do these rays do in their futures? 
For this, we need the “trapped” nature of S2, which tells us that the 
divergence of these rays starts off as negative as they leave S2. Now there 
is a result known as the “Raichaudhury effect” for rays [12], [13], that 
tells us that if we have a null hypersurface (such as B3) for which the 
divergence of its generating rays is initially negative (which is here the 
trapped-surface condition) and for which the curvature along the rays is 
non-negative (i.e., according to Einstein’s equations, that the energy flux 
across these ray s is non-negative, as indicated in Fig. 11), then after a 
finite affine distance along the ray its separation from some of its neigh-
bouring rays becomes zero, which is what happens at a caustic point, as 
illustrated at the top right of Fig. 8. This tells us that – either at that 
caustic point, or, more usually earlier than that, at a crossing region of 
B3 – the ray ceases to lie on the boundary B3 of F4 and enters into the 
interior of F4. Either way, it is only a finite segment of the ray which lies 
on B3, telling us that B3 must, in fact, be compact, consisting entirely of a 
union of finite segments of rays, each of which has an initial end-point 
on the compact surface S2.

It is this compactness of B3 that actually leads us to a contradiction 
that drives us to the conclusion that there must be a singularity some-
where within F4 (or perhaps at its boundary). However, in my original 
paper [11] I used a rather clumsy argument to demonstrate this, and 
afterwards Charles W. Misner pointed out to me that I could have used a 
much simpler argument, using the fact that there is a general theorem 
concerning Lorentzian manifolds (i.e. manifolds with the standard met-
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ric signature, with one time-like dimension and the rest space-like) that 
there exists a smooth time-like vector field all over the whole manifold. 
We can follow along such a vector field to map B3 homeomorphically 
(i.e. preserving its topology) into C3. Since B3 is compact without bound-
ary, the image of this map must also be compact without boundary. 
Since this 3-dimensional image indeed has no boundary, it must be the 
whole of C3. But C3 is non-compact, which immediately provides us with 
the required contradiction. I had been aware of the result that Misner 
was using in his subsequent contribution to the argument, but for some 
reason I had not thought of using it. In all my later accounts of this result 
I took advantage of Misner’s simplification. 

In the autumn of 1965 there was a conference at Imperial College, Lon-
don about progress in general relativity, and Igor Novikov from the Rus-
sian school tried to present the aforementioned 1963 result, but Misner 
then pointed out the conflict with my result. Subsequently Belinskii 
joined with Lifschitz and Khalatnikov to provide a corrected paper with a 
conclusion opposite from what they had done before [14], and Misner 
provided his own version [15], these papers demonstrating how 
immensely complicated the singularities in a general gravitational col-
lapse can be, with the Weyl tensor itself diverging in an extremely compli-
cated way. I shall refer to these as BKLM-type singularities.

At this point, I should draw attention to the fact that what I showed 
was that the occurrence of singularities is a robust prediction of Ein-
stein’s general theory of relativity, not necessarily that black holes must 
necessarily be the consequence of a realistic gravitational collapse. 
Another possibility might be that “naked singularities” could arise, 
these being, in effect, space-time singularities that are not hidden 
behind event horizons, and so might actually be directly visible from a 
distance away. Unlike the case of a black hole, however, there is no rea-
son to expect that actual naked singularities should exist in nature 
(although there are many exact solutions of the Einstein equations 
which do possess naked singularities, such as the Schwarzschild solu-
tion for a negative mass). The normal view – probably correct, in my 
opinion – is that naked singularities cannot occur in ordinary gravita-
tional collapse situations but, as far as I am aware, no mathematical 
theorem has yet been provided to demonstrate what I have referred to 
as the “Cosmic censorship hypothesis”, which might, in effect, prove 
that naked singularities are unstable, or something like that (though I 
did once write a paper exploring some mathematical implications of the 
production of naked singularities [16]).

 After I gave my talk at King’s College London, Dennis Sciama asked 
me to give a repeat in Cambridge, which I did in early 1965 and at that 
occasion Stephen Hawking was present (though he had not been pres-
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ent at my London talk). Immediately following my Cambridge lecture, I 
had a private session with Stephen, accompanied also by George Ellis, 
who had been collaborating with him on the use of certain ideas that 
they had hoped might be useful in addressing the necessity of the Big 
Bang singularity. I explained much more about the details of my argu-
ments. Stephen Hawking very quickly picked up on the ideas and 
applied a version of my own result to cosmology in an original way. Sub-
sequently, Hawking developed these techniques very considerably, often 
with the benefit of critical corrections from Brandon Carter. Hawking’s 
developments were published in a series of three papers in the Proceed-
ings of the Royal Society [17], [18], [19], [20]. Eventually I came back to 
collaborate with Hawking to provide a very general result which encom-
passed practically all that had gone before [21] (although with a slightly 
stronger energy condition than the one used in my original argument 
[11]).

Hawking’s considerations were directly concerned with the problem of 
the Big Bang. The issue under consideration was whether the “singular” 
description of that event is necessary, and might it have been the case 
that there had been a previously collapsing phase of the universe which, 
through some extreme complication of the earlier collapse, the universe 
might have “bounced” into the expansion that we now perceive in our 
“Big Bang”.

In Fig. 15 I have indicated our current picture of the overall history of 
the universe, from its Big Bang origin to the currently observed expo-
nential expansion. The frilly part at the back is just to accommodate the 
currently popular view that the universe may well not be spatially 
closed, but may continue indefinitely in spatial directions. The exponen-
tial expansion is a conclusion arrived at by the 2011 Physics Nobel Prize 
laureates Saul Perlmutter, Brian Schmidt and Adam Riess, and it can be 
most directly explained by the presence of a positive value for the cos-
mological constant Λ in Einstein’s modified gravitational field equa-
tions. Einstein introduced his Λ-term for the wrong reason in 1917. At 
that time, Einstein was hoping to be able to accommodate a spatially 
closed static universe into his equations. However, he later rejected that 
term in his equations after being convinced by Hubble and others that 
the universe is actually expanding. Nevertheless, a positive value for Λ is 
the most economical explanation for what is now rather misleadingly 
referred to as “dark energy”, namely the cause of the exponential expan-
sion that I have schematically depicted in Fig. 15, this having been con-
vincingly observed at around the turn of the 21st century by Perlmutter, 
Schmidt and Riess.
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The “singularity theorems” that Stephen Hawking and I and some oth-
ers had developed, all have the character of being completely insensitive 
to the direction of time. I remember being puzzled by the fact that 
whereas one might well expect that some very complicated solutions of 
the Einstein equations might apply in the future, perhaps being realized 
through the interplay by systems of black holes, while, on the other hand, 
cosmologists seemed to restrict their attention to the very simplest of 
possibilities. I recall being very puzzled by why cosmologists did not 
study any of the many other kinds of possible singular origins for the uni-
verse. I remember an occasion when I was in Princeton and was about to 
go to one of the frequent conferences at Stevens Institute in Hoboken, 
New Jersey. We used to drive up in several cars, and I noticed in the back 
of one of the cars was James Peebles (later to become the 2019 Nobel 
Prize laureate in physics), so I asked him why serious cosmologists never 
seemed to consider any of these complicated possible alternative singu-
larities that you might have for the description of a Big Bang, rather than 
just this simple highly symmetrical special case. Why, I asked, do cosmol-
ogists never consider any of these more complicated alternatives? He just 
looked at me and said, “because the universe is not like that”. So, I 
thought to myself: “my gosh, it isn’t like that is it – but why?”

I presumed that he was partly thinking about the uniformity of the cos-
mic microwave background radiation (CMB) which is indeed very uniform 
over the whole sky, having been discovered in 1963 by Arno Penzias and 
Robert Wilson, the 1978 Physics Nobel Prize laureates (shared also with 

Figure 15. 
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Pyotr Kapitsa), and this remarkable uniformity tells you that the universe 
really is indeed very spatially uniform. It struck me that there is something 
very strange about all these various singularities, namely that the big bang 
singularity is utterly different from the kinds that you might see in the 
future, namely in the collapses in black holes, with the distinct likelihood 
of things like the BKLM type of singularity arising! I was very puzzled by 
this, particularly since everybody seemed to think that the solution to the 
singularity problem would lie in combining general relativity with quan-
tum mechanics. Accordingly, you need to find a quantum gravity theory to 
resolve the singularities – so everyone had supposed. But it seemed to me 
that it must be a very peculiar quantum gravity theory which is grossly 
asymmetrical in time, in  order to give you a theory which makes the sin-
gularities quite different in structure in the past from in the future!

I held this view for quite a long time, but then I began to worry more 
about this problem in relation to the entropy in the universe. This is a key 
issue, which I shall come to shortly, but let us first consider what is cur-
rently a very popular view about what the very early universe was actually 
like. In Fig. 15, I have indeed sketched the history of our universe accord-
ing to observation (and some theory), with time going up the picture. At 
the bottom is the big bang and at the top we see the beginnings of the 
exponential expansion which became an observationally established fea-
ture of current cosmology, through the work of Reiss, Schmidt and Perl-
mutter and which can be taken as an implication for a positive cosmologi-
cal constant Λ in Einstein’s 1917 version of his theory.

 

Figure 16. 
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However, if you want to get a picture of what seems to be currently 
believed by most cosmologists concerning the extremely early universe, 
you need a very powerful magnifying glass (Fig. 16) in order have a good 
look at it in the picture. What you would see (Fig. 17), according to cur-
rent “inflationary cosmology” would be a much earlier exponential 
expansion, supposedly all taking place within the absurdly tiny initial 
10–32 seconds, or so, of the universe’s existence, this being referred to as 
the inflationary phase of the universe’s expansion. Inflation was initially 
introduced by Starobinski and Andrei Linde [22], and by Alan Guth [23], 
[24] in the early 1980s for various reasons, but a particularly important 
one in the present context was in order to explain an observed striking 
feature of the tiny variations in the temperature of the CMB radiation 
over the sky, namely that these variations are extremely closely scale 
invariant, which suggests some sort of exponentially expanding origin for 
these disturbances.

Another claim often made for the existence of this early inflationary 
phase was that it would iron out the very early universe immediately fol-
lowing the big bang so as to provide us the very uniform universe that 
James Peebles had pointed out to me.

 

Figure 17. 
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However, I could never believe that it would actually do that, for the 
following reason. Imagine that the universe was contracting, rather than 
expanding, as shown in Fig. 18, this being simply Fig. 15 turned upside 
down, so the progression of time is still represented as going up the pic-
ture. We should take note of the fact that all the relevant dynamical equa-
tions – including those of the “inflation field”, introduced solely for the 
purpose of making inflation work – are all unchanged if we reverse the 
direction of time. Accordingly, Fig. 18 represents a possible universe evo-
lution. However, if we introduce some perturbations into the mass distri-
bution, we must expect black holes to arise in this collapsing situation, 
which will start to merge with one another and finally produce a horren-
dous non-uniform mess of a “generic” singularity at the end, as indicated 
in Fig. 19, the presence of an “inflation field” making no essential differ-
ence at all to the picture. Now, we reverse the time-direction back again, 
as shown in Fig. 20, and we ask: why did the universe not have this “far 
more probable” type of big bang singularity, as opposed to the uniform 
one illustrated in indicated in Fig. 15? Inflation provides no answer to this 
fundamental problem.

 

Figure 18. 



78           THE NOBEL PRIZES

In order to quantify this issue a little better, we must turn to thermody-
namics, and most particularly to the Bekenstein-Hawking formula for the 
entropy of a black hole. We find, for the totality of the black holes cur-
rently within our observable universe, that the entropy is utterly domi-
nated by that in the black holes. Moreover, in a collapse situation like that 
in Fig. 19, where we take into consideration only the amount of material 
(including dark matter) within our current observable universe, we find a 
value for the entropy in a collapse like that of Fig. 19 would be something 
like 10124. Then, taking into consideration that entropies are really loga-
rithms of probabilities, we come to the conclusion that if our big bang had 
come about as a singularity chosen somehow “by chance”, then the odds 
against the uniform situation in the big bang that we actually appear to 
see (i.e. like Fig. 20, rather than the observed Fig. 15, now with time pro-
ceeding upwards in the picture), would be something like the utterly 
absurd figure of around exp(10124):1 (i.e. the probability of our observed 
universe having the uniformity that we see, this having been a chance 
occurrence – inflation or no inflation – would be the reciprokal of a num-
ber with around 10124 digits) which can hardly be the right answer! We 
need another explanation for the extraordinary specialness of our big 
bang.

 

Figure 19. 
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In fact, the issue is even more curious than this. Let us consider Fig. 21. 
The top three pictures represent a gas in a box where in the top left-hand 
picture we see the gas initially constrained to be in a smaller box in its 
lower right-hand corner. Then you open this smaller box and the gas 
spreads out within the large box, so that as we move from the left-hand to 
the right-hand of the top three pictures, the gas gets more and more uni-
form. This illustrates the action of the 2nd law of thermodynamics, where 
the entropy (or the randomness) increases with time – time being repre-
sented as going from left to right in Fig. 21. Now let us consider the bot-
tom three pictures in Fig. 21. These represent an imagined galactic-scale 
box containing a large number of stars, initially (bottom left picture) 
taken to be pretty uniformly distributed. Then, because of the universally 
attractive nature of gravity, the star distribution gets more and more 
clumpy, as we move from the lower left picture to the lower right one 
with, perhaps, the formation of a black hole, in the lower right-hand pic-
ture. Again, the time increases from left to right, and so also does the 
entropy.

Figure 20. 
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Now, what is it that we see in the very early stages of our actual uni-
verse? It is uniformity which, as described in Fig. 21 by a combination of 
the upper right and lower left pictures. Moreover, one of the most striking 
features of the CMB observations is the extraordinarily precise Planck 
curve in temperature distribution for different frequencies, telling us that 
the matter – by which term I include both the electromagnetic field 
together with the actual material particles – is indeed in a very closely 
maximally entropic state. Where the initial very low entropy (a necessity 
for the 2nd law) resided, was in gravity and only in the gravity! The puzzle 
about the origin of the 2nd law lies in the very curious nature of the big-
bang singularity, where the gravitational degrees of freedom appear to 
have been completely suppressed i.e. like Fig. 15 and not like Fig. 20. 

Why is there such an extraordinary difference between the past-type 
and future-type singularities? As mentioned earlier, I used to think that 
there must be a very peculiar, blatantly time-asymmetric theory of quan-
tum gravity governing this past/future distinction. Later, I simply postu-
lated that past-type singularities must have vanishing Weyl curvature – 
i.e. vanishing gravitational degrees of freedom (what I called “the Weyl 
curvature hypothesis”). But this does not provide us with any kind of 
“physical reason” that, whereas the singularities of gravitational collapse 
must almost always have wildly diverging Weyl curvature, perhaps like 
the very exotic BKLM situation, the structure of the actual big bang 
appears to be quite the opposite.

As an approach to studying both the singularities and the asymptotic 
features of space-times, and also the massless fiends within them, I had 
come to realize the enormous value of looking at a space-time from the 

Figure 21.
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conformal point of view, rather than just its more restricting metric struc-
ture. The Weyl curvature is, after all, distinguished as describing the con-
formal curvature of a space-time. Moreover, massless fields, most notably 
Maxwell’s electromagnetic field, all exhibit conformal invariance. Even 
more importantly, the conformal structure of any physically reasonable 
space-time is effectively the same as its causal structure, as we shall come 
to see very shortly.

Figure 22.

 For the understanding of the asymptotic structure of a space-time, we 
need to understand what its “infinity” might be like. To this end, it is 
helpful to turn to Fig. 22, which shows (in his print “Circle limit I”) how 
the Dutch artist M.C. Escher exquisitely illustrates how the infinity of the 
hyperbolic plane can be represented as a smooth circular boundary (Bel-
trami-Poincaré disc). Conformal maps preserve angles, rather than dis-
tances, so small shapes are accurately represented, but not necessarily 
their sizes. Note that, in this picture, the eyes of the fish-creatures remain 
exact circles, no matter how closely we approach the boundary.
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 We can use similar representations for space-times, and to understand 
what is involved, it is useful to look first at Fig. 23 where, in addition to 
the null cone of Fig. 6, I have added some hill-shaped and bowl-shaped 
surfaces, marked in brown. These brown surfaces (in full 4-dimensional 
space-time being 3-dimensional surfaces) enable us to represent the full 
metric stricture at a point of space-time. They represent the ticks of iden-
tical clocks travelling at different velocities through the vertex point, as 
indicated in Fig. 24. At the bottom of this picture, I have written the two 
most famous formulae of 20th century physics, one of these being, of 
course, Einstein’s well-known formula E = mc2 (fundamental to relativity 
theory), and the other being Planck’s earlier formula E = hv, (where v is a 
frequency, fundamental to quantum mechanics). Einstein tells us that 
energy and mass are equivalent, and Planck tells us that energy and fre-
quency are equivalent, so putting the two together we see that mass and 
frequency are equivalent (c and h being just conversion constants). This 
tells us that any stable massive particle is, in effect, a perfect clock! (The 
frequencies would be extremely high for individual fundamental particles, 
but appropriately scaled down, this gives us what is, in effect, the basis for 
atomic and nuclear clocks.) In fact, it is in the amount of “crowding” of 
these surfaces that the metric of space-time is defined.

 

Figure 23.
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Perhaps one usually thinks of a space-time’s metric to be defining dis-
tances on an infinitesimal scale. However, it is much more physically 
direct to think of times as defining the metric structure. Spatial distances 
then arise as a secondary concept, determined in terms of times of tran-
sit, the time measures along world lines of particles being primary.

Figure 24.

Figure 25.
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But what about massless particles, where we now think of a photon in 
free space? We see from Fig. 25. that the photon does not even notice 
these scale-determining brown surfaces and does not “experience” the 
passage of time at all. To a photon, there is no elapse of time from one 
end of its trajectory to the other, so these scaling surfaces now play no 
role whatever, and we may as well remove them altogether, so we are left 
simply with the null cones themselves. Without the scaling, we simply 
have the metric up to proportionality, i.e. the space-time’s conformal 
structure, i.e. that defined by the null cones themselves (Fig. 26, as in Fig. 
6 and Fig. 7). It may be mentioned that, since causal signals are transmit-
ted by effects on or within the null cones, the conformal stricture of 
space-time also defines its causal structure.

 

Figure 26.

Moreover, it is not just the classical picture of a photon that is con-
cerned with only the conformal structure, rather than the full metric 
structure of space-time. James Clerk Maxwell’s famous equations for the 
electromagnetic field can also be seen (when phrased appropriately) to be 
insensitive to the metric scaling, needing only the null-cone structure and 
not the full metric, i.e. Maxwell’s equations are conformally invariant. 
Moreover, the Schrödinger equation for a photon’s wave-function is, in 
effect, just Maxwell’s equations and is therefore also conformally invari-
ant. This conformal invariance would extend also to other massless parti-
cles and, in an appropriate sense, to gravitational wave propagation.

Now, as with Escher’s representation of the infinity of the hyperbolic 
plane shown in Fig. 22, we can also use conformal re-scalings of the met-
ric to get a good picture of the future infinity of cosmological models. 
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When there is a positive value for the cosmological constant Λ, we find 
that this future conformal infinity is space-like [25], so it represents this 
infinity as a temporal “moment”, albeit a moment that would be at time 
“infinity” according to the normal space-time metric. This conformal 
“squashing down” of temporal infinity is represented at the top part of 
Fig. 27. This procedure is very general for space-times with positive Λ, as 
has been demonstrated by Helmut Friedrich [26], who showed that such 
a conformal future boundary is generic for space-times with Λ > 0 and 
massless field sources.

Figure 27.

This conformal squashing of the future can be accompanied by a con-
formal stretching out of the big bang to obtain a smooth spacelike past 
boundary, as illustrated at the bottom part of Fig. 27. This is a standard 
procedure that can be applied to most conventional cosmological models 
[25], [27]. However, these models assume isotropy and homogeneity, and 
therefore do not address the issue, raised earlier, that singularities of the 
type illustrated in Fig. 20 would have been vastly more probable, and we 
need some form of “Weyl curvature hypothesis”, asserting that “past-
type” space-time singularities must have highly restricted (perhaps zero) 
Weyl curvature, while no such restriction would be appropriate for 
future-type space-time singularities.

Yet, we definitely need such a hypothesis to restrict the possibilities for 
the past if we are to describe space-time models which have any real hope 
of describing the actual universe, in which there is a 2nd Law of Thermo-
dynamics in accordance with what is observed, for which the low entropy 
in the early universe arises from the initial suppression of gravitational 
degrees of freedom. As was remarked earlier, the presence of a very early 
phase of the universe in which there was an inflationary expansion does 
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not in itself resolve this issue (and it is my own opinion that there was 
actually no such inflationary phase – an issue that we shall need to return 
to shortly). In any case, inflation or no inflation a huge constraint on the 
Big Bang is required, which is indeed of the nature of some kind of “Weyl 
curvature hypothesis”, as appears to be a feature of the actual universe in 
which we find ourselves. Accordingly, the ontological status of adopting 
each of the two conformal boundaries, depicted in Fig. 27, could hardly be 
more different, the one in the future being a generic procedure, very 
broadly applicable, and imposing no significant constraint on the applica-
bility of the procedure being presented, whereas the one in the past pro-
vides an enormous restriction on the type of universe model under seri-
ous consideration.

Nevertheless, we can regard such a restriction as indeed formulating a 
version of Weyl curvature hypothesis, where we may regard such a 
hypothesis as an essential feature of any universe model having a chance 
of representing the actual world that we see around us. In fact, it was Paul 
Tod (of the university of Oxford, and a former graduate student of mine) 
who first formally proposed, and then studied in detail, this form of Weyl 
curvature hypothesis [28] – namely that for our actual universe, the 
stretching procedure, illustrated at the bottom of Fig. 27 should result in a 
smooth initial spacelike hypersurface boundary, this being a far more 
attractive and mathematically tractable procedure than my original rather 
vague form of this hypothesis. Tod’s procedure allows detailed calcula-
tions to be performed, and this enables the implications of the hypothesis 
to be studied in some considerable detail.

With regard to the future conformal infinity, it had been a useful 
“mathematical trick” in the study of gravitational radiation, etc., to 
imagine that the future infinity could be conformally extended smoothly 
to a fictional space-time continuation beyond this future infinity [29], 
[30]. But now we can imagine that a kind of “time-reverse” of this trick is 
applied to the Big Bang, where we contemplate a fictional pre-Big-Bang 
extension of our universe. Thus, not only can we imagine a fictional 
extension of the universe’s future to some kind of world beyond, but we 
can also contemplate a fictional world that extends our universe in a con-
formally smooth way to some world prior to our Big Bang.
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This may not be quite the usual way that cosmologists have thought to 
picture the universe, but there is nothing outrageous about it. What may 
actually be regarded as outrageous, on the other hand, is the picture pre-
sented in Fig. 28, where the view is taken that neither of these conformal 
extensions is taken to be “fictional”, but both are regarded as being actu-
ally real. The new feature about these extensions is that we do not con-
tinue the Big Bang singularity to another future-like singularity or per-
haps a remote future boundary to a remote past-type boundary, but we 
preserve the time directions, to continue our non-singular remote future 
boundary to a succeeding big bang singularity, and precede our Big Bang 
singularity by a non-singular remote future boundary, thereby automati-
cally forcing our Big Bang to satisfy a Weyl curvature hypothesis, as 
appears to be required.

Such a picture makes geometrical sense, but we must ask whether it can 
possibly make physical sense. On first consideration one might well take the 
view that this is unreasonable because the remote future is extremely cold, 
and the density very low, whereas at the Big Bang, things were very much 
the opposite, with an extraordinarily high temperature and density. How-
ever, when you conformally rescale things, the conjugate variables go the 

Figure 28.
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opposite way. Time scales oppositely to energy and space scales oppositely 
to momentum. Thus, the very cold and rarefied remote future re-scales to 
the very hot and dense next big bang, this being consistent with the very 
large measures of space and time in the remote future rescaling to very tiny 
measures of space and time in the next big bang, all this being consistent 
with the model that I have been proposing [31].

There is also an issue about the cosmological constant Λ. This needs to 
be positive for the scheme to work. The stretched-out Big Bang appears 
to be space-like in all serious models, but for the scheme to work we are 
restricted to those for which the conformal infinity is also space-like, this 
corresponding to Λ > 0 which, fortunately for the scheme, appears to be 
the case [25]!

I refer to this scheme as conformal cyclic cosmology or CCC for short. 
The portion of the sequence from a big bang moment to its following 
remote future I call an aeon. I adopt the conceptually simplest version of 
CCC that there is an infinite succession of aeons, infinite in both direc-
tions, though other possibilities might also be considered. I also adopt the 
view that the aeons are qualitatively similar to one another so that, the 
constants of nature do not vary from aeon to aeon, but other possibilities 
are certainly open to consideration. I tend to use the capitalised “Big 
Bang”, when this refers to the specific moment that initiated our current 
aeon, and “big bang” otherwise.

A comment needs to be made in relation to inflation. Certainly, CCC is 
not compatible with the version of inflation that is currently favoured by 
many cosmologists, because this would provide a causal gap between 
aeons that would ruin the observational issues that will be described 
below, though a very small inflationary phase could be considered. A 
more satisfactory CCC picture would be to eliminate inflation altogether, 
the hope being that the things that inflation is useful for in cosmology can 
be taken over by the final exponential behaviour of the previous aeon, 
which plays any role that in conventional cosmology an exponentially 
expanding phase seems to be required. In short, CCC does provide an 
“inflationary phase” in effect, but it occurred prior to the Big Bang rather 
than following it!

Our final issue has to do with possible observational tests of CCC. In 
fact, there are several of these, especially if one takes the view that the 
various cosmic aeons are necessarily qualitatively similar to each other. 
Then there are certainly issues about physical parameters having to 
match on two sides of the crossover 3-surface joining one aeon to the 
next. Another possibility might be signals, such as electromagnetic ones 
getting through from one aeon to the next, as indicated in Fig. 29. These 
might be important magnetic fields getting across, for example, but that 
has not yet been looked at.
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An alternative, which has indeed been examined is the possibility of 
gravitational wave signals getting across. These could certainly get 
through, in the CCC picture. We can imagine that encounters between 
supermassive black holes within a previous-aeon galactic cluster 
should encounter one another from time to time, and in doing so, 
should emit enormous amounts of energy in the form of gravitational 
waves. Such waves ought certainly to be able to get through into our 
aeon after smoothly propagating through the crossover between the 
two. When in our aeon, such waves would transfer some of their energy 
into electromagnetic form and slightly affect the temperature of our 
microwave background, each wave often making a large ring of such 
slightly increased temperature. Such a ring can be understood as being 
the intersection of the sphere W2 here the gravitational wave encoun-
ters our last scattering 3-surface L3 win the sphere M2 which is where 
our past light cone meets L3, so that M2 is, is fact, our own microwave 
background sky. The circle in the microwave sky that we are looking for 
is the intersection W2∩M2 of these two spheres. Rather remarkably, 
two groups appear to have independently observed rings consistently 
with such expectations. One was a Polish group, [32], [33], who regard 
their observations to support our CCC expectations, with around 
99.5% confidence level.

Figure 29.
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The other is a collaboration between myself and my Armenian col-
league Vahe Gurzadyan. In order to get a significant enough signal, we 
took advantage of the fact that within any particular large-enough galac-
tic cluster in the previous aeon there ought normally to be several such 
encounters between supermassive black holes. Each such black-hole 
encounter should provide one of these rings in our CMB, but since there 
should be several of these events within the same cluster, these should 
provide rings with the same centre (see Fig. 30). In our papers [34], [35]
we considered that the temperature disturbance in the CMB should be 
able to be seen as a reduced temperature variance around the ring, and to 
get a strong enough signal, we looked for occurrences where there are at 
least 3 different low-variance rings with the same centre, being from the 
same cluster. This would be plotted as a single point in the map of our 
CMB sky. The results are illustrated in Fig. 31, and we find what we regard 
as a rather remarkable effect, First of all, we notice that the points, indi-
cating the ring centres and therefore, according to the theory, the loca-
tions of galactic clusters in the previous aeon, are extremely clustered, 
and certainly not uniformly distributed across the sky, as would have 
been expected according to conventional ideas about the uniformity of 
the universe, that should reveal itself on a large-enough scale. Moreover, 

Figure 30.
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the points are also distinctively clustered with regard to colour, this col-
our coding referring to the temperature assigned to the individual ring 
whose centre is being marked in the picture. We must also recall that the 
criterion for selecting the points was not the overall energy (temperature) 
of the ring, but the fact that the variance in the temperature was low. The 
actual temperature is an independent parameter, and (according to the 
theory) should be a signal of the distance of the source of the signal from 
us. The theory says that the red points in the picture are extremely distant 
and the blue ones somewhat less distant. Accordingly, according to the 
theory, the galactic clusters that we seem to be seeing are very non-uni-
formly distributed, not only in their angular separation across the sky, but 
also in the distance away from us!

Figure 31.
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Finally, we should consider the completely different effect illustrated in 
Fig. 32. This concerns the ultimate phenomenon that we presume to have 
taken place in the previous aeon. According to the effect predicted by 
Hawking, a black hole ought to have a very tiny temperature, referred to 
as the Hawking temperature, which for a very large black hole would be 
exceptionally tiny. Nevertheless, as the universe expands, the temperature 
of the universe gets lower and lower until it becomes smaller even than 
the Hawking temperature of the supermassive black hole, at which point 
the hole itself begins to evaporate away, all of its enormous mass being 
eventually radiated away into this Hawking radiation. However, because 
this occurs so extremely late in that aeon’s existence (perhaps at least 
10100 years), this entire activity occupies what is effectively a single point 
on the crossover surface, as exhibited in Fig. 33. However, the mass-en-
ergy cannot be lost, and it bursts through into the subsequent aeon (our 
aeon) at a single point that we refer to as a Hawing point. The energy 

Figure 32.



93           Roger Penrose Lecture

bursting through at that point would disperse itself through that early 
material reaching a certain diameter until revealing itself as a heated spot 
of a certain diameter on the last scattering surface. See Fig. 34. It turns 
out that we actually see such spots in the CMB sky with an angular diam-
eter of about 4° radians (about 8 times the diameter of the full moon), 
which is close to what one should expect on theoretical grounds, with a 
confidence level of about 99.98%. [36]

 

Figure 33.
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