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History of blood-borne viral hepatitis

After the discovery of the hepatitis B virus (HBV) by Dr. Baruch Blumberg 
and colleagues in the late 1960s (1–3), serological tests were developed to 
detect this virus in blood donors which led to the realization in 1974 that 
the majority of post-transfusion hepatitis cases were not due to blood 
transmission of this virus (4). With the discovery of the hepatitis A virus 
(HAV) in 1973 by Drs. Steve Feinstone, Bob Purcell and colleagues (5) and 
the introduction of tests to detect this virus, it was found in 1975 that the 
vast majority of non-HBV blood-borne hepatitis was not due to HAV (6). 
Originally perceived as of minor importance, the work of Dr. Harvey Alter 
and others in the field went on to show the important role of this disease 
in developing chronic liver disease (7). Termed blood-borne Non-A, 
Non-B hepatitis (NANBH), this triggered a long search spanning 15 years 
to identify the causative agent or agents. 

The initial breakthrough in the discovery of HBV was the identifica-
tion of an unusual antigen observed in the blood of Australian aborigi-
nes, later shown to be the major envelope glycoprotein of HBV (1–3). 
However, no such specific antigen was identified for the NANBH 
agent(s) prior to the discovery of HCV in 1989 (8). The visualization of 
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27nM diameter particles in the stools of infected animals and humans 
proved decisive in the discovery of HAV (5) but no such virus particle 
could be associated with NANBH (8). The critical discovery of HIV was 
enabled by its lytic propagation in vitro in peripheral blood mononuclear 
cells (PBMNCs) derived from AIDS patients by Drs. Françoise Bar-
ré-Sinoussi and Luc Montagnier (9) but the difficult in vitro propagation 
of HCV did not occur until 2005 by Dr. Takaji Wakita and colleagues 
(10) and to this day, it still remains difficult to grow efficiently in cell 
cultures. So, methods used to identify other hepatotrophic viruses and 
HIV proved unable to identify HCV.

The long molecular search for HCV (1982–1989)

My own quest to identify the causative agent(s) of NANBH began in 1982 
with the belief that emerging molecular biological methodologies could 
be capable of success. Initially, Dr. Tatsuo Miyamura from the Japanese 
NIH visited and worked in my laboratory at the Chiron Corporation for 
one year bringing human liver samples derived from autopsied materials. 
However, the quality of the mRNA was poor resulting from degradation of 
the tissue after death. We then realized that to obtain intact mRNA, we 
would have to work with materials from the living chimpanzee model 
which had been shown to be a reliable model for NANBH by a few labora-
tories around the world (11–14). This animal model had proven to be of 
great value in HBV research. Consequently, we initiated a collaboration 
with Dr. Daniel Bradley of the US Centers for Disease Control (CDC) who 
was a leader in the NANBH chimpanzee model. Fig. 1 shows typical 
results from his laboratory in which acute NANBH could be passaged in 
the common chimpanzee (pan troglodytes) from a human factor 8 prepa-
ration contaminated with the NANBH agent(s).

From 1983 onwards, Dr. Bradley provided me with a continuous sup-
ply of blood and liver biopsy samples from many of his NANBH-infected 
and control, uninfected chimpanzees and for several years thereafter, one 
major theme of my laboratory was to identify rare NANBH-specific 
poly-A+ mRNAs derived from the etiological agent(s) of NANBH via 
interrogation of very large bacterial cDNA libraries derived from NAN-
BH-infected chimpanzee liver samples. We used highly radioactive 
hybridization cDNA probes derived either from NANBH-infected liver 
poly-A+ mRNA (the + probe) or from control, uninfected livers (the – 
probe) to identify many genes apparently upregulated in NANBH-in-
fected livers using duplicate blotted filters of the cDNA libraries (Fig. 2).

We now know that many genes within the liver are modulated (up- or 
down-regulated) by HCV infection, including those involved in the innate 
and adaptive host immune responses (15,16). Despite obtaining many 
upregulated NANBH-specific genes, none could be ascribed to being 
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Figure 1. Alanine aminotransferase (ALT) activity (reflective of liver damage) in serial  
serum specimens from chimpanzees with non-A, non-B hepatitis. Chimpanzee no. 941 
was inoculated with plasma II from chimpanzee no. 771 (122).

Figure 2. Method of identifying genes modulated by NANBH infection using radiolabe-
led cDNA hybridization probes derived from poly-A+ mRNA derived from NANBH-infec-
ted livers (the + probes) and control, uninfected livers (the – probes). In this way, genes 
up- and down-regulated by NANBH infection were identified.
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derived from a NANBH etiological agent since they all hybridized to the 
chimpanzee and human genome and therefore were not extra-chromo-
somal, a criterion used for designating a possible pathogen derivation. In 
an attempt to increase our probability of success, we requested to Dr. 
Bradley that he try to produce chimpanzee liver and blood samples of 
similar infectivity titers to those reported by other NANBH research 
groups around the world (around 1 million chimpanzee infectious doses 
per ml of human plasma (17) or chimpanzee (18) plasma and similar 
infectious titers per gram of NANBH liver tissue from the same animals. 
We co-funded work in Dr. Bradley’s laboratory to attain these goals in 
1985 via his production of large plasma pools and liver samples from his 
chimpanzees #910 & #771 (19,20; Fig. 3). Unfortunately, interrogating 
cDNA libraries from these sources of tissue from 1985–1987 still failed to 
identify any clones derived from an etiological NANBH agent(s). 

In 1979, Dr. Yohko Shimizu and colleagues at the US NIH demon-
strated that one NANBH agent, termed the tubule-forming agent (tfa), 
elicited double layered membranes and membranous tubules within the 
endoplasmic reticulum of hepatocytes in infected chimpanzees (21). Dr. 
Bradley pointed out that such cytoplasmic membranous changes were 
reminiscent of changes within cell cultures infected by RNA viruses such 
as the flaviviruses and togaviruses, from which he suggested that the tfa 
may be related to such viruses (22). He also showed that the infectivity of 
the tfa was destroyed by treatment with organic solvents and that it could 

Figure 3. Alanine aminotransferase (ALT) activity in serial serum specimens from chim-
panzees with non-A, non-B hepatitis. A plasma pool made from #910 was shown to have 
an infectivity titer of ~ 1 million chimp infectious doses per ml (19,20).
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pass through a filter with pore sizes of 80nM, leading him to suggest that 
the tfa was either a small lipid-enveloped virus similar to flaviviruses and 
togaviruses or that it was HBV-like (a 40nM enveloped DNA virus), or 
that it was a novel type of virus (19,22,23).

This led my laboratory to interrogate his chimpanzee samples with 
hybridization probes derived from the HBV DNA genome as well as from 
various flaviviral and togaviral RNA genomes. There were papers pub-
lished around this time suggesting that one NANBH agent could be HBV-
like (24). However, we could not detect any hybridization signals between 
these known viral genomes and the NANBH chimpanzee samples. We 
also interrogated (again unsuccessfully) the chimpanzee NANBH samples 
using picornaviral and coxsackie viral genomes, since Dr. Bradley had 
observed 27nM viral particles resembling these non-enveloped viruses 
within some chimpanzee hepatocytes that received inocula previous-
ly-treated with organic solvents (19,22,23). None of this time-consuming 
work resulted in the identification of a specific molecular probe or handle 
for the NANBH agents.

In another attempt to identify a virus related to the NANBH agent(s) 
my laboratory, working with that of Dr. John Gerin’s laboratory at the US 
NIH, identified the genome of the hepatitis D virus (HDV). Originally dis-
covered in the form of an unusual antigen (the “delta antigen”) by Dr. 
Mario Rizzetto within hepatocyte nuclei in some HBV patients experienc-
ing severe hepatitis (25), its infectivity for non-human primates was 
shown to be associated with a RNA molecule that required HBV for infec-
tivity and transmission (26). We showed that this RNA molecule was 
indeed the HDV genome being a covalently-closed-circular, sin-
gle-stranded RNA whose complementary anti-genomic RNA encoded the 
delta antigen (27). Highly reminiscent of infectious plant pathogens like 
viroids and virusoids, the HDV genome exhibited strong intramolecular 
base-pairing under physiological conditions to form a double-stranded 
RNA rod-like structure that could only be visualized in the electron 
microscope under strongly denaturing conditions (27,28; Fig. 4).

Figure 4. The cova-
lently-closed-circu-
lar, single-stranded 
RNA genome of the 
HDV pathogen as 
observed in the EM 
under strongly de-
naturing conditions 
(27,28).
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Replicated by host RNA polymerase II in a rolling circle mechanism, 
the HDV RNA genome, like the similar plant pathogens, was shown by Dr. 
Taylor’s laboratory to possess an innate ribozymic activity, self-cleaving 
itself from a larger precursor RNA and then able to self-ligate (29,30). 
This HDV ribozyme has proven to be a useful tool in general molecular 
biological research and the availability of recombinant delta antigen and 
its specific antibodies led to improved diagnosis of HBV carriers superin-
fected with HDV. Therapeutic strategies have also been facilitated by fur-
ther knowledge of its replication strategy (31). 

Dr. Robert Purcell’s laboratory at the US NIH was the first to propose 
that HDV may be related to HCV based on the similarity in tubular mem-
branous structures observed within the hepatocytes of chimpanzees 
infected by either virus (32). However, Dr. Amy Weiner in my laboratory 
could not detect any cross-hybridization between the HDV genome and 
nucleic extracts derived from Dr. Bradley’s NANBH-infected chimpanzee 
samples, thus ruling out the possibility of there being any close genetic 
relationship between the two agents (ref. 33; Fig. 5).

A possible relationship between the blood-borne NANBH agent and 
retroviruses was indicated by a report of reverse transcriptase activity in 
NANBH sera samples (34) and by the propagation of foamy-like viruses 
in cell cultures infected with NANBH samples (35), but despite intense 
efforts, we were unable to confirm these findings.

A new exciting era of NANBH research was heralded by Dr. Shimizu at 
the NIH who cloned B cells derived from NANBH individuals and showed 
that their secreted antibodies could bind specifically to thin liver sections 
derived from NANBH-infected livers but not to control, uninfected livers 
(36). Generally termed as the “Shimizu antibodies”, this discovery 
spawned great activity in the field because hitherto, no NANBH-specific 
antibodies or antisera had been confirmed using similar histochemical 
binding assays.

Figure 5. Dot blot hybridization of 
radio-labeled HDV cDNA to various 
standards and NANBH nucleic acids 
extracted from chimpanzee #910 
plasma pool (top far right dot shows 
no detectable hybridization signal to 
NANBH-derived nucleic acids (33).
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In an effort to confirm the reactive antigen specific to the Shimizu anti-
gens (hopefully encoded by the NANBH etiological agent), we employed the 
cDNA immuno-screening method devised by Drs. Young and Davis (37). 
Developing a highly efficient λgt11 bacteriophage cloning and expression 
vector, they demonstrated the ability to identify various genes by screening 
resulting proteomic cDNA bacterial libraries with specific monoclonal anti-
bodies or polyclonal antisera of known high affinity and titer (Fig. 6).

Unfortunately, this approach was not successful when we screened 
cDNA libraries derived from NANBH-infected chimpanzee livers with the 
Shimizu antibodies. Indeed, it was well known at that time that immu-
no-screening cDNA libraries did not always meet with success. Earlier in 
our work, I had considered a similar immuno-screening approach using 
sera from NANBH patients and chimpanzees as a presumptive source of 
antibodies to the NANBH agent, but had deemed it too risky because no 
such antibodies had been demonstrated despite intensive efforts by the 
field. Also, the NANBH agent(s) was known to be highly persistent in 
most patients suggestive of a weak, inadequate humoral immune 
response, as known to be the case in cases of persistent HBV infection 
following exposure of immune-competent adults to the virus. However, in 
the context of our unsuccessful work on Shimizu antibodies (which Dr. 
Shimizu later showed, by purifying and sequencing the target protein, 
were targeting host proteins not encoded by HCV), my next-door labora-
tory neighbor Dr. George Kuo (then working on non-HCV projects) 

Figure 6. Detection of amylase genes using a recombinant immuno-screening method 
employing bacteriophage λgt11 lysogens and an amylase IgG probe (37).
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strongly encouraged me to gamble on screening cloned NANBH libraries 
with NANBH patient sera. I found his argument to be persuasive that the 
lack of demonstration of NANBH-specific antibodies to date could possi-
bly be due more to limiting concentrations of NANBH antigen within the 
thin liver sections used in histochemical screening, rather than the true 
absence of circulating NANBH antibodies. Dr. Bradley was also of this 
opinion and was providing chimpanzee samples to another group pursu-
ing this same approach (although this group subsequently terminated this 
approach due to lack of success and its perceived risk).

 Initially, Dr. Qui-Lim Choo in my laboratory screened many of my 
NANBH-infected chimpanzee liver cDNA libraries derived from poly-A+ 
mRNA with sera derived from NANBH-infected individuals as a presump-
tive source of specific NANBH agent antibodies. Despite using many dif-
ferent chimpanzee and human sera samples derived from the minority of 
individuals that appeared to have spontaneously eradicated their acute 
NANBH infections based on normalization of serum ALT levels and who 
we therefore hoped had a strong protective immune response to the etio-
logical agent, we could not identify any cDNA clones that were 
extra-chromosomal in origin and hence deemed unlikely to be derived 
from the causative NANBH genome. Based on the possibility that the 
NANBH agent could be togavirus-like which do not have a poly-A+ tail 
(or produced poly-A+ mRNAs during replication), I then turned to mak-
ing λgt11 proteomic libraries derived from the NANBH-infected chimpan-
zee plasma pool from animal #910. In order to do this, this plasma pool 
was ultra-centrifuged such that the smallest virus known to man would 
be pelleted. Initially, RNA extracted from this pellet was then 
reverse-transcribed using random primers. The resulting cDNA was 
cloned into λgt11 and screened by Dr Choo using sera from apparently 
“convalescent” NANBH-infected chimpanzees and patients. Yet again, no 
molecular clones derived from the NANBH agent(s) genome could be 
identified. By now, after several years of trying unsuccessfully to track 
down the causative NANBH agent(s) using numerous different 
approaches, it felt like I was groping around in the dark looking for the 
proverbial “needle in a haystack”.

As indicated earlier, it was well appreciated by molecular biologists at 
that time that cDNA immuno-screening often failed to identify genes of 
interest even when well-characterized antisera or monoclonal antibodies 
of high affinity were available. Therefore, wanting to reassure myself that 
this method really could be successful at identifying an infectious agent 
de novo, I used our previously characterized infectious HDV plasma 
extracts and cloned it into λgt11 prior to screening with HDV-infected 
patient sera that we already knew contained high titer antibodies to the 
delta antigen. Numerous HDV clones were successfully obtained in this 
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way giving us confidence that this method could possibly work for identi-
fying the NANBH genome(s). However, the infectivity titer of HDV 
plasma was known to be many orders of magnitude higher than the best 
NANBH chimpanzee plasma pool and so I knew that successful detection 
of NANBH clones was still very risky and uncertain (indeed, of at least 6 
plasma-derived libraries that I made during this period without the assis-
tance of PCR amplification technology , which had not yet emerged, only 
one was to prove successful). In addition, the worrying possibility of a 
weak humoral immune response to NANBH infection still existed.

I then made a second attempt to identify molecular HCV clones 
derived from the infectious chimpanzee #910 plasma pool, this time 
implementing two significant changes. The first involved cloning ran-
dom-primed, reverse-transcribed cDNA from RNA extracted from the 
ultra-centrifuged plasma pellet, as well as cloning the DNA existing 
within this pellet. This was because we did not know if the NANBH 
agent(s) was a RNA or DNA virus. The second change was to screen this 
bacterial proteomic library with serum from patients diagnosed with 
chronic, persistent NANBH infection in the hope that perhaps these 
chronic patients might have higher titers and affinities of NANBH 
agent-specific antibodies as compared with apparent “convalescent” indi-
viduals experiencing acute, resolving NANBH infection (we later showed 
this indeed to be the case after we successfully identified HCV and devel-
oped anti-HCV antibody tests). Dr. Choo and myself selected a chronic 
NANBH patient with unusually high ALT levels that we hoped was indica-
tive of a strong immune response to the NANBH agent(s). This resulted in 
the identification of several clones (Fig. 7).

Figure 7. Iden-
tification of 
clone 5-1-1. 
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 In addition to identifying positive clones encoding MS2 bacteriophage 
RNA (a carrier that was essential for me to use before the emergence of 
the powerful PCR nucleic acid amplification technique), Dr. Choo found 
clone 5-1-1, a small clone containing only ~ 100bps, but one that we could 
later prove was derived from an etiological agent of NANBH. We showed 
that clone 81 (overlapping with 5-1-1) was derived from a large RNA of 
around 10,000 ribonucleotides in length that was found only in NAN-
BH-infected samples, not control uninfected samples, that was sin-
gle-stranded and positive-stranded with respect to encoding the 5-1-1/81 
antigen (Fig. 8). 

 

Figure 8. (38). Hybridization of clone 81 cDNA to RNA. (A) Spot hybridization of 2, 4, or 
12 ug of total liver RNA extracted from either chronic NANBH-infected chimp 910 (al 
to a3) or from two control, uninfected animals (bl to b3 and cI to c3) with 32P-labeled 
nick-translated clone 81 cDNA. (B) Spot hybridization of nucleic acid extracted from viral 
plasma pellets before (spot 1) or after treatment with either excess deoxyribonuclease 
1 (spot 2) or ribonuclease A (spot 3). Hybridization probe as in (A). (C) Each strand of 
clone 81 cDNA was subcloned into phage M13mp18 and then labeled by incubating with 
Klenow Escherichia coli DNA polymerase 1 in the presence of hybridization probe primer 
and [a-32P]dCTP. Each probe was then hybridized to slot blots containing either identi-
cal portions of viral RNA derived from infectious plasma (al and bl) or 2 pg of purified 
clone 81 double-stranded cDNA (a2 and b2). (D) Northern blot analysis of 30 pg of total 
RNA (track 1), 30 pg of unbound RNA (track 2), and 20 ug of bound RNA (track 3) after 
chromatography on oligo(dT)-cellulose. RNA was derived from the liver of infectio-
us chimpanzee # 910. The top of the smear in track 3 corresponds to around 10,000 
ribonucleotides in length. 32P-labeled nick-translated clone 81 cDNA was used as the 
hybridization probe.
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Furthermore, using a Western blot analysis, only chimpanzees (4/4) 
infected with NANBH seroconverted to anti-5-1-1 antibodies unlike ani-
mals infected with HAV or HBV (0/7; representative examples shown in 
Fig. 9).

Furthermore, we showed that 7 of 11 USA NANBH patients had circu-
lating antibodies to the 5-1-1 antigen but these were absent in control, 
uninfected individuals. Moreover, as we obtained more and more overlap-
ping cDNA clones from the same cDNA library, we began to see distant 
but significant primary sequence identity with flaviviruses like Dengue 
virus. These data convinced us that we had indeed identified a major etio-
logical agent of NANBH, which led to my first public disclosure of the dis-
covery of HCV in the spring of 1988 at the University of California in San 
Francisco, work subsequently published in 1989 (38).

In the next stage of our work, Dr. Kuo developed a high throughput 
radioimmunoassay to detect antibodies targeting the antigen C100-3, 
which was encoded by a few adjacent clones overlapping with 5-1-1, 
which we used to assay a pedigreed panel of known infectious and known 
non-infectious NANBH samples from Dr. Harvey Alter. This blinded 
study revealed that our assay did indeed have specificity for NANBH and 
furthermore, demonstrated that such antibodies were present in infec-
tious NANBH samples meaning that we could therefore use this assay to 

Figure 9. (38). Western blot assay for anti-5-1-1 antibodies. (A) Incubation of the chro-
nic NANBH patient serum used to isolate done 5-1-1 with blots of total bacterial lysates 
expressing either a fusion of the 5-1-1 antigen with superoxide dismutase (SOD) (lane 
1) or control SOD (lane 2). (B) Sequential serum samples from experimentally infected 
chimpanzees were reacted with identical strips cut from a preparative blot of total lysate 
containing the 5-1-1/SOD fusion protein. Day 0 represents the day of virus inoculation. 
Infections were monitored by serum ALT concentrations (international units per liter). 
Control strip C was incubated with the same patient serum used in (A). 
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detect infectious blood donors and patients (39). In addition, using a 
highly pedigreed panel of 10 post-transfusion NANBH patients of Dr. 
Harvey Alter at the USA NIH, we showed that all 10 were positive for 
HCV antibodies and that there was at least one HCV-positive blood donor 
involved in 9 of these 10 cases (39). After assaying other NANBH patient 
cohorts from other collaborators from the USA, Italy and Japan, it 
became clear that the majority of NANBH samples were positive for HCV 
antibodies (39). This constituted confirmation that we (Fig. 10) had iden-
tified the major cause of blood-borne NANBH. 

 
Ramifications of the molecular isolation of HCV
1. Diagnosis

Our first priority then was to protect the global blood supply by develop-
ing blood screening diagnostics to detect circulating HCV antibodies. 
Using the protein encoded by clone 5-1-1 and two adjacent clones, we 
were able to produce the C100-3 antigen in recombinant yeast which was 
used to detect circulating HCV antibodies in the first commercial EIA 
assays (initially produced by Ortho Diagnostics and shortly afterwards by 
Abbott Laboratories). This was shown to detect the majority of infectious 
blood donors and chronically-infected patients (39,41). 

Meanwhile, we and many other laboratories around the world began to 
characterize the viral proteins encoded by the HCV RNA genome (42–47) 
from which it became clear that the virus encoded a large polyprotein 
precursor that was cleaved co- and post-translationally by a variety of cel-
lular and viral proteases into structural virion proteins and a large num-
ber of proteins required for viral replication (Fig. 11).

Figure 10. The core HCV discovery 
team (40). Drs. Michael Houghton 
(upper left), Qui-Lim Choo (upper 
right), George Kuo (lower left), 
Daniel Bradley (lower right).
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By producing recombinant proteins from the various protein domains 
encoded by HCV, we were able to detect and map additional B cell 
epitopes, both linear and discontinuous epitopes conserved among the 
different strains of HCV, that we incorporated into a series of EIA tests of 
ever-increasing sensitivity (48,49). This led to commercial EIA tests 
detecting circulating HCV antibodies with >95% sensitivity as well as 
confirmatory tests (50). Dr. Weiner then developed the first PCR-based 
test to detect circulating HCV genomic RNA including in some individuals 
lacking HCV antibodies (51). Shortly afterwards, another laboratory col-
league, Dr. Jang Han, showed that the 5’untranslated region (UTR) of the 
HCV genome was highly conserved among the many different genotypes 
and strains of HCV and was even highly conserved with the animal pesti-
viral 5’UTRs (52). It should be noted that although the genomic RNA of 
the HCV strain that we isolated (HCV1) does contain a short poly-A 
region, this is in the gene encoding the nucleocapsid C gene (43) and is 
not at the 3’ terminus of the HCV genome ( which can be a product of 
spurious PCR reactions; 52).

The highly conserved 5’UTR allowed very sensitive nucleic acid tests to 
be developed first by PCR methods (53) and later by transcription-medi-
ated amplification (TMA) methods (54).

Over the course of a few years after the identification of the HCV RNA 
genome, the co-introduction of these HCV antibody and HCV genomic 
nucleic acid detection tests effectively arrested the global transmission of 
HCV from blood donors as well as allowing the diagnosis of all HCV 
patients. Such tools also became invaluable to monitor patient responses 

Figure 11. The HCV polyprotein precursor and its cleavage products (42–47).



232           THE NOBEL PRIZES

to interferon and ribavirin therapy (55,56) and much later, to specific 
direct-acting-antivirals (DAAs; 57).

By this time, it became evident that HCV was a very heterogeneous 
virus that is now known to comprise at least 7 major genotypes around 
the world with each genotype comprising many related sub-types (Fig. 12; 
refs 58–60,114,116). 

The first variant subtype identified was from the laboratory of Dr. Tat-
suo Miyamura at the Japanese NIH who identified what is now known to 
be the most common global subtype (1b; 58). Subtype 1a is the most com-
mon in North America, meaning that the major genotype 1 (comprising 
subtypes 1a & 1b) is the most common around the world (61–63,114,116). 
Median inter-genotype diversity was calculated to be 32.39% at the nucle-
otide level and 25.02% at the amino acid level (116). The lowest nucleotide 
diversity is observed between HCV major genotypes 1 and 4 (29.03%) and 
the highest between HCV genotypes 2 and 3 (35.46%; 116).

2. Direct-acting-antiviral (DAA) development

Up until 2014, standard-of-care treatment of NANBH patients comprised 
type 1 interferon combined with the guanosine analogue, ribavirin 
(55,56). Requiring at least 6 months of treatment, it was associated with 
significant toxicity and resulted in virus eradication in only 40–50% of 
patients. The isolation and characterization of the HCV genome and its 

Figure 12. Phylogenetic tree of full-length HCV genomic RNA sequences (116).
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encoded enzymes and proteins in 1989 enabled the HCV field, comprising 
numerous academic and corporate laboratories around the world, to pur-
sue the development of direct-acting-antivirals (DAAs) to treat HCV 
patients. My laboratory (64) and those of Dr. Charles Rice (65) and Dr. 
Kunitada Shimotohno (66) first showed the presence of a serine chymot-
rypsin-like protease within the HCV NS3 protein (Fig. 13).

Later shown to complex with the NS4a co-factor (67,68), this activity 
was targeted by many groups and led to the approval of first generation 
antiviral DAAs, boceprevir and telaprevir, in 2011. While potent and of 
great value to patients, these drugs were associated with significant toxic-
ity that led to the subsequent approval of more potent and better toler-
ated 2nd (Simeprevir and Asunaprevir) and 3rd generation drugs (Paritap-
revir, Grazoprevir, Glecaprevir and Voxilaprevir; 69).

The HCV NS5b protein encodes the viral RNA-dependent RNA poly-
merase for which the nucleoside inhibitor prodrug, Sofosbuvir (Sovaldi), 
was approved for human use in 2013 (70). Non-nucleoside inhibitors of 
this enzyme have also been developed (Dasabuvir;71). All of this drug 
development work was greatly facilitated by the development of HCV cell 
culture systems, from the laboratories of Dr. Ralf Bartenschlager and Dr. 
Charles Rice, able to replicate the HCV genome (72,73). Although not 
capable of producing progeny virus, these systems served as valuable 
tools to screen for inhibitors of the HCV replication cycle and allowed the 

Figure 13. The HCV NS3-encoded serine protease activity. The polyprotein precursor fails 
to be properly cleaved in active site mutations (mt) versus wild-type enzyme (wt; 64).
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field to generate a huge amount of valuable information regarding HCV 
replication mechanisms. Furthermore, these replicon systems enabled the 
development of unconventional drugs targeting the NS5a protein. By 
screening for antiviral drugs and then selecting for drug-resistant muta-
tions, the extremely potent Daclatasvir targeting the NS5a dimer was first 
developed by a group at Bristol-Myers-Squibb (74) followed by many 
active chemical derivatives from other pharmaceutical companies (Ledi-
pasvir, Velpatasvir, Ombitasvir, Elbasvir). These drugs represent the most 
potent antivirals ever developed against any virus and they bind to a 
pocket formed by the NS5a dimer (Fig. 14; 75,76). 

HCV drug development was also greatly facilitated by the ability to test 
efficacy in a mouse model developed by Drs. David Mercer, Lorne Tyrrell, 
Norman Kneteman and colleagues, able to support robust HCV replica-
tion in transplanted human hepatocytes (117). 

The HCV DAAs are used together in various combinations to effec-
tively shut down viral replication, resulting in eradication of HCV in the 
large majority of patients, usually within 2–3 months of oral administra-
tion. The first drug combination to accomplish this historic landmark was 
Harvoni (Ledipasvir + Sofosbuvir) from Dr. John McHutchison and col-
leagues at Gilead Sciences, which was approved for human use in 2014 
followed later by Epclusa (Sofosbuvir + Velpatasvir) in 2016. The latter 
cocktail is very effective against all HCV genotypes. HCV represents the 
first chronically-infecting virus of man that can be eradicated using anti-
virals. This has led the World Health Organization (WHO) to issue the 
objective of eliminating HCV infection as a major public health threat by 

Figure 14. Essential 
pharmacophoric 
features for potent 
directly acting NS5A 
inhibitors (76). These 
features are a central 
biaryl core (orange 
spheres), two H-bond 
acceptor sites (cyan 
spheres), and two 
hydrophobic sites 
(green spheres). The 
pharmacophoric sites 
are mapped over 
Daclatasvir (green 
sticks).
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2030 via a “test and treat” policy and by developing a much-needed vac-
cine. Notably, Egypt and other countries have already made substantial 
progress towards curing their HCV-infected peoples with DAAs (77). 

3. Towards vaccines against HCV

Unfortunately, vaccine development for HCV has been slow due to many 
factors. Five years after we identified the HCV genome, Drs. Choo, Kuo, 
Ralston, Spaete and myself with other colleagues published strong evi-
dence for prophylactic vaccine efficacy in the reliable chimpanzee model 
(78–80). Using adjuvanted recombinant envelope glycoproteins E1 & E2 
(in the form of a native heterodimer, 79) derived from transfected mam-
malian cells, we could show that of 7 animals immunized 3 times over the 
course of 6–7 months, 5 were sterilized against homologous virus chal-
lenge while the other 2, although becoming acutely infected, eradicated 
the virus within a few months. In contrast, 4/4 control unimmunized ani-
mals became chronically infected after challenge (80).

Since HCV-associated disease manifests itself only in the chronic 
phase of infection, usually after many years, this data was most encourag-
ing for the feasibility of developing an effective HCV vaccine. Unfortu-
nately, the chimpanzee is an endangered species and very costly to use, 
such that private and public funding to extend this work took many years 
to become available. Perhaps vaccine over-pessimism from the field in 
general also contributed to this budget constraint despite the pandemic 
nature of HCV infection. Eventually, we showed that vaccinated chimpan-
zees challenged with a heterologous viral strain also significantly reduced 
the incidence of chronic infection (Table 1; 81,82). To date, our E1E2 vac-
cine remains the only HCV vaccine candidate shown to be efficacious at 
reducing chronic HCV infection in animal models.

 After many years when the ability to produce infectious HCV pseudo-

Viral challenge Group Total Acute infections Chronic infection (%) 

gpE1/gpE2
Unimmunized

Homolog
HCV-1

12
10

7
10

2(17)
7(70)

P=0.03

Heterolog
H77

gpE1/gpE2
Unimmunized

19
14

19
14

3(16)
8(57)

P=0.02

Total gpE1/gpE2
Unimmunized

31
24

26
24

5(16)
15(63)

P=<0.001

Table 1. Summary of outcome of chimpanzee challenge studies using animals vaccinated 
with adjuvanted recombinant gpE1/gpE2 vaccine or unimmunized control animals and 
then challenged with either homologous (HCV1) or heterologous (HCVH77) subtype 1a 
viruses that predominate in North America (ref. 82).
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particles in the laboratories of Drs. Jane A, McKeating and François-Loïc 
Cosset (83,84), then infectious virus itself by Dr. Wakita and collaborators 
(85) finally became possible, we were able to show that adjuvanted recom-
binant E1E2 envelope glycoproteins derived from a single HCV 1a strain 
elicited broad cross-neutralizing antibodies in vaccinated mice (86), guinea 
pigs (86), chimpanzees (87) and then human volunteers (Fig. 15; 88,89).

The use of chimeric HCV pseudoparticles (pp) and cell-cultured (cc) 
viruses containing E1E2 derived from multiple genotypes has greatly 
facilitated our knowledge of cross-neutralizing antibody responses 
(90,115). However, antibody-mediated neutralization of infectivity is 
weaker against genotypes 2 and 3 relative to 1,4,5 and 6 (87–89) and we 
have demonstrated different neutralization potencies even within the 
same genotype and subtype (121), suggesting that an optimum vaccine 
may need to comprise E1E2 derived from multiple genotypes, as is com-
mon for vaccines against other viruses (and bacteria).

Both neutralizing antibodies and HCV-specific cellular immune 
responses correlate with protection against the development of chronic 
HCV infection (91–99) and we showed that in addition to cross-neutral-
izing antibodies, the HCV E1E2 vaccine also elicits strong T cell lymphop-
roliferative responses in vaccinated humans (89,123). Furthermore, in the 
last 20 years, various groups have isolated cross-neutralizing HCV mono-
clonal antibodies targeting multiple, discrete epitopes within E1 and E2 
(100–112), some of which have been demonstrated to be protective in 
HCV animal models (102,107,109,110) and to synergize with each other 
(108). Using monoclonal antibody competition assays, we showed that 
human volunteers vaccinated with recombinant E1E2 elicited antibodies 
to many of these discrete cross-neutralizing epitopes (113). 

Figure 15. Human volunteers #s 1, 5 & 7 were vaccinated with adjuvanted gpE1/gpE2 
and their antisera (diluted 1:50) assayed for the ability to neutralize different world-wide 
strains of HCVcc (89).
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Along with the knowledge that acutely-infected chimpanzees (118,120) 
and people-who-inject-drugs (PWIDs; 119) who can eradicate HCV infec-
tion without therapy are then largely immune to developing chronic, per-
sistent infection following re-exposure to homologous or heterologous 
HCV, these accumulated vaccine and immune correlates data do indicate 
the feasibility of developing a HCV vaccine. Further clinical studies of our 
HCV vaccine, designed to elicit broad cross-neutralizing HCV antibodies 
and broad, HCV-specific cross-reactive CD4+ & CD8+ T cell responses, 
are planned over the next few years with the objective of making it availa-
ble first to high-risk PWIDs around the mid-2020s. 

Together with the “test and treat” policy, successful vaccine develop-
ment could mark the end of HCV being a major public health issue by 
2030, if not before. The tremendously rapid development of SARS-2-
Cov-2 vaccines using lipid/RNA and adenoviral vector technologies (124) 
are now also being applied to HCV vaccinology, giving the HCV field even 
more hope of delivering a global HCV vaccine within the 3rd decade of 
this millennium.
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