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Causality in Econometrics: 
Choice vs. Chance1

Prize Lecture 8 December 2021 by
Guido W. Imbens
Graduate School of Business, and Department of Economics, Stanford, 
CA, USA.

This essay describes the evolution and recent convergence of two methodolog-
ical approaches to causal inference. The first one, in statistics, started with 
the analysis and design of randomized experiments. The second, in economet-
rics, focused on settings with economic agents making optimal choices. I 
argue that the local average treatment effects framework facilitated the recent 
convergence by making key assumptions transparent and intelligible to schol-
ars in many fields. Looking ahead, I discuss recent developments in causal 
inference that combine the same transparency and relevance. 

1. INTRODUCTION

Knowledge of causal effects is of great importance for decision makers in 
government, firms, as well as individuals in their private lives. Inferring 
the values of these effects from observed data is often a major challenge 

1. This is a revised version of my recorded Prize lecture posted on December 8, 2021. I am grateful 
for comments from Alberto Abadie, Joshua Angrist, Mohammad Akbarpour, Dmitry Arkhangelsky, 
Susan Athey, Kevin Bryan, Ambarish Chattopadhyay, Matthew Gentzkow, Chad Jones, Eva Lestant, 
Alexia Olaizola, Thomas Richardson, Jesse Shapiro and Amar Venugopal. I also want to gratefully 
acknowledge the discussions on the topics discussed here over many with Alberto Abadie, Joshua 
Angrist, Susan Athey, Gary Chamberlain, Tony Lancaster, Whitney Newey, and Donald Rubin, as 
well as my students and collaborators. 
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when causal mechanisms are not fully understood. These challenges have 
motivated methodological research in multiple disciplines. This research 
got a major boost in the 1920s and 1930s, thanks to advances in the 
design and analysis of randomized experiments in statistics and, sepa
rately, methodological work on observational studies in econometrics. 
More recently, in the late 1980s and early 1990s, there was a sharp 
increase in empirical and methodological research in economics, as well 
as other disciplines, with an explicit focus on estimating causal effects. A 
convergence of the statistical and econometric traditions has been a cata
lyst for this increase.2 More than thirty years later, causality is a thriving 
area of study. Researchers from many disciplines, including economics, 
statistics, political science, psychology, epidemiology, computer science 
and other fields, bring new questions and different methodological per
spectives to the discussion. Applications range widely from biomedical to 
social science, with interest coming from academic, government, and pri
vate sector organizations.

In this lecture I discuss some of the themes of this field. Per the charge 
of the committee awarding the prize, this article focuses primarily on my 
contributions to the study of causality, but I shall place them in the context 
of the broader interdisciplinary literature.3 I start by discussing briefly some 
of the history of methods for causal inference in statistics and economet
rics. I then discuss the credibility crisis in the 1980s that provided some of 
the motivation for the work that was recognized in the prize. After that I 
discuss some of my contributions to the causal inference literature. In that 
part of the paper, I will also add some background and color to the specific 
research I describe, discussing the origins and questions that motivated my 
collaborators and myself, as well as pivotal moments in my intellectual 
journey. I see this prize as a recognition of the importance of this general 
interdisciplinary enterprise and hope it further invigorates the field.4

2. CAUSALITY FROM THE 1920S TO THE 1980S

Although there were earlier empirical studies focused on estimation of 
causal effects, the research on statistical methods for causality and causal 
inference started in the first half of the twentieth century. In the 1930s, 
two distinct literatures emerged in new disciplines that both focused on 
the developing new methodologies for estimating causal effects: one in 
statistics and one in econometrics.

2. See Currie, Kleven, and Zwiers (2020) for a documentation of these trends in economics.
3. See Hull, Kolesár, and Walters (2022) for additional context and references.
4. Evidence of the interdisciplinary nature of this research area is the fact that other prestigious 
prizes were awarded in 2022 explicitly for research in causal inference, including the BBVA Award 
to the computer scientist Judea Pearl and the Rousseeuw Prize for Statistics to the epidemiolo
gists Jamie Robins, Thomas Richardson, Andrea Rotnitzky, Miguel Hernán, and Eric Tchetchgen 
Tchetchgen.
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Curiously, in both disciplines, the explicit use of the term “causality” 
was relatively rare and often discouraged. In statistics, the dictum “corre
lation is not causality” kept most researchers from using the term outside 
of randomized controlled trials. Early on in economics, the term was used 
more widely (e.g., Tinbergen (1941)). That did not last, and the use of the 
term in either empirical or methodological work became increasingly rare. 
In the 1950s, a number of foundational studies proposed formal defini
tions of causality (e.g., Wold (1954), Simon (1955) and references therein). 
Herman Wold took the position that “The concept of causality is indis
pensable and fundamental to all science” (abstract, Wold (1954)). He then 
tried to define it in the context of a relationship Y = f(X) + e and wrote that 
the “relationship is then defined as causal if it is theoretically permissible 
to regard the variables as involved in a fictive controlled experiment with 
[X] for cause variables and [Y] for effect variable” (p. 166, Wold (1954)). 
This somewhat vague definition did not catch on and Herbert Simon, the 
1978 Laureate in economics, questioned “whether we wish to retain the 
word ‘cause’ in the vocabulary of science” (p. 54 in Hood et al. (1953)). 
Even though Simon argued in favor of doing so, the term causality 
remained out of favor in the economics literature. In his 2001 Prize lec
ture, Daniel McFadden argues that “detection of true causal structures is 
beyond the reach of statistics” and recommends that “For these reasons, 
it is best to avoid the language of causality” (p. 369, McFadden (2001)), 
despite analyzing what are clearly causal questions regarding the demand 
for public transportation under different scenarios.5 It was not until the 
1990s that the term started to gain currency in both empirical and meth
odological work in microeconomics, as documented in Currie et al. 
(2020), and also in statistics and other disciplines.

3. CAUSALITY IN THE STATISTICS LITERATURE: THE PRIMACY  
OF CHANCE

In the statistics literature, the initial focus was on inference for causal 
effects when the assignment to treatment was based entirely on chance. 
Both Fisher (1937) and Neyman (1923/1990) developed new methodolo
gies for analyzing Randomized Controlled Trials (RCTs) where the 
assignment to treatment is completely random and known to the 
researcher. They focused on different questions. Fisher was primarily 
interested in testing sharp null hypotheses about causal effects.6 The 

5. During this time a different notion of causality, now typically referred to as GrangerSims cau
sality, based on presence or absence of predictive relationships, was proposed in the timeseries 
literature, Granger (1969), 
6. Sharp null hypotheses are hypotheses where there are no nuisance parameters, and the full distri
bution of all random variables is known under the null.
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leading case considered by Fisher was the null hypothesis that there was 
no (causal) effect of the treatment whatsoever, against the alternative 
hypothesis that, for at least some units, there was some effect. Using a 
sharp null hypothesis allowed Fisher to infer the exact finite sample dis
tribution for any test statistic (that is, any function of the data), under 
the randomization distribution (the distribution of the statistic induced 
by the randomization), given the null hypothesis. The most common 
example of such a test statistic is the difference in average outcomes by 
treatment status. Based on the randomization distribution, Fisher 
showed how to calculate the pvalue: that is, the probability of observ
ing a value for the statistic more extreme than, or as extreme as, the 
actual value of the statistic.
The use of pvalues calculated in this way continues to be widely used in 
the analysis of RCTs. However, in recent years there has been increasing 
concern that such calculations do not answer the primary questions of 
interest for decision makers, which typically depend on magnitudes of the 
causal effects and not just their presence (e.g., Wasserstein and Lazar 
(2016), Imbens (2021)). Even Fisher retreated somewhat from viewing 
them as central in his later work (Basu, 2011; Rubin, 1980).

Neyman, in line with these modern concerns about the relevance of 
pvalue calculations, viewed the testing of sharp null hypotheses as “only 
of academic interest,” leading to a fallingout with Fisher that was never 
resolved (Reid, 1998). Instead, Neyman focused on estimating average 
causal effects and constructing confidence intervals for them. Like Fisher, 
Neyman studied the properties of such procedures under the randomiza
tion distribution. The work by Fisher and Neyman continues to be the 
basis of the analysis of randomized experiments, not only in agricultural 
and biomedical settings, but also in online experimentation (Gupta et al. 
(2019)).

Subsequently, the causal literature in statistics has studied the design 
and analysis of experiments in more complex settings such as stratified, 
paired, clustered, and crossover experiments (Imbens and Rubin (2015), 
Wu and Hamada (2011)). Currently, much of the interesting research in 
this area focuses on more complex experimental designs including adap
tive (Dimakopoulou et al. (2017)) and multistage designs (Bajari, Bur
dick, Imbens, Masoero, McQueen, Richardson, and Rosen (2021)).

For much of the 20th century, formal discussion of causal inference in 
statistics was limited to testing and estimating causal effects in rand
omized experiments. It was primarily Rubin’s work that made estimating 
causal effects in nonexperimental (observational) studies a topic of inde
pendent research interest. One of Rubin’s greatest contributions to this 
literature was to put the notion of potential outcomes center stage. In 
Rubin (1974), he casts the causal inference problem as one where we wish 
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to compare two (or more) potential outcomes, Yi(E) and Yi(C), defined for 
the same physical unit i. Yi(C) is the unit’s outcome given exposure to the 
control treatment, and Yi(E) is the outcome for the same unit, at the same 
time, given exposure to the experimental treatment. Let the actual expo
sure for this unit be denoted by Wi ∈ {C,E}. Then the realized (and poten
tially observed) outcome is

The causal effect is the difference Yi(E) − Yi(C) (or some other comparison 
of Yi(E) and Yi(C)). A benchmark estimand is the average causal effect 
over the population,

where the number of units in the population is N. The causal inference 
problem now becomes a missing data problem: for the same unit we can
not observe the two potential outcomes, one given exposure to the exper
imental treatment and one given exposure to the control treatment. Hol
land (1986) referred to this as “the fundamental problem of causal infer
ence,” (p. 947, Holland (1986)), and it provides important links to the 
missing data literature (e.g., Little and Rubin (2019)).

When I first came across this potential outcome framework, it made a 
powerful impression on me. It forces the researcher to consider what 
manipulation could have revealed the ex post missing potential outcome. 
In some cases that is not easy. For example, when studying important 
societal questions regarding race or gender, it is often unclear what 
manipulation would allow one to causally interpret any statements about 
differences in economic outcomes by race or gender. As a result, it is not 
always clear how to think about causality in such settings. See the discus
sion between Holland (1986) and Granger (1986), and also in a medical 
setting, Amutah et al. (2021). A number of studies show that partial pro
gress can be made by manipulating the perception, rather than the actual 
value, of race, gender, or other characteristics (e.g. Bertrand and Mullain
athan (2004), Goldin and Rouse (2000)).

More generally, the potential outcome notation clarified to me the dis
tinction between causal variables or treatments, which are arguments in 
the potential outcome functions; and covariates, attributes, or pretreat
ment variables, which may be correlated with the potential outcomes, but 
which are not themselves causal and thus not arguments in the potential 
outcome function. In the econometric textbooks at that time, this distinc
tion was not made. Instead a division was made between endogenous and 
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exogenous variables with no widely agreedupon definitions. In that divi
sion, causal variables could be exogenous or endogenous, depending on 
the assignment mechanism.

Rubin’s second contribution was the articulation of a key set of 
assumptions that moved away from completely random assignment. In 
collaboration with Paul Rosenbaum, Rubin focused on the case where 
assignment to treatment is not completely random, but conditional on 
some observed confounders, it can be viewed as random (Rosenbaum 
and Rubin (1983b)). This key assumption is referred to in various litera
tures and in various forms as unconfoundedness, ignorable treatment 
assignment, exogeneity, or selection on observables, and is closely related 
to the ‘missing at random’ assumption in the missing data literature (Lit
tle and Rubin (2019)). If the observed confounders for unit i are denoted 
by Xi, unconfoundedness corresponds to conditional independence (con
ditional on the observed confounders) of the treatment and the potential 
outcomes:

Here the distinction between covariates/pretreatment variables Xi and 
causes Wi is important. Unconfoundedness is an assumption on the 
assignment mechanism that determines Wi. It does not place any restric
tions on the distribution of the covariates. In the earlier econometric liter
ature, exogeneitytype assumptions would group together the causes and 
covariates, conflating the substantive assumptions on the assignment 
with the construction condition on the covariates.

Unconfoundedness, in combination with overlap in the covariate dis
tributions7 and sometimes with additional functional form assumptions, 
justifies a wide variety of statistical adjustment methods including (lin
ear) regression, matching, inverse propensity score weighting, and doubly 
robust methods. See Imbens (2004) for a survey. The particular setting in 
(1) has become the workhorse model for causal inference and it has 
spawned vast empirical and methodological literatures. It has also been 
the leading example used to motivate developments in the semiparamet
ric literature. The methodological literature continues to study challeng
ing cases involving high dimensional covariates using modern machine 
learning methods (Chernozhukov et al. (2017), Athey et al. (2018), Shi et 
al. (2019)).

7. Overlap means that for all values of the covariates, there are units in the treatment and control 
groups, or, more formally, that pr(Wi = E|Xi = x) ∈ (0, 1) for all values of x.
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4. CAUSALITY IN THE ECONOMETRICS LITERATURE: THE PRIMACY 
OF CHOICE

The founders of the Econometric Society were also interested in estimat
ing causal effects. However, they took a very different approach to this 
challenge. Whereas statisticians emphasized the chance aspect of the 
assignment and took randomized experiments as the starting point, early 
econometricians focused on settings where the values of the causes were 
determined by deliberate choices made by economic agents maximizing 
their utility under constraints. One canonical setting, for example in Tin
bergen (1930) (see the translation in Hendry and Morgan (1997)), is that 
of a market where we observe prices and quantities. To understand the 
relationship between quantities and prices in a market, economists do 
not simply look at the correlation between quantities and prices, but 
rather start with a theoretical economic framework. In his editorial for 
the first issue of Econometrica, Frisch articulated this in a way that con
tinues to resonate, perhaps now more than ever:

“Statistical information is currently accumulating at an unprece
dented rate. But no amount of statistical information, however com
plete and exact, can by itself explain economic phenomena. If we are 
not to get lost in the overwhelming, bewildering mass of statistical 
data that are now becoming available, we need the guidance and help 
of a powerful theoretical framework. Without this no significant 
interpretation and coordination of our observations will be possible.” 
(p. 2, Frisch (1933))

In the case of markets, a theoretical framework of the type Frisch refers 
to comprises a model of supply, demand, and market equilibrium. For 
example, an early study, Tinbergen (1930), focused on the market for 
potato flour.8 Here I use the example from my paper with Joshua Angrist 
and Kathryn Graddy (Angrist, Graddy, and Imbens (2000)) where we ana
lyze the market for fish (specifically whiting) using data from the Fulton 
Fish Market collected by Graddy for her PhD thesis at Princeton Univer
sity. The framework starts with an aggregate demand function, aggre
gated over all potential buyers coming to the fish market on a given day. 
For each individual buyer, the demand function comes from that buyer 
deciding how much fish they would be willing to buy as a function of the 
price, given their preferences and budget constraint. The aggregate 
demand function describes how much the buyers collectively are willing 
to buy at any given price. This setup very closely mirrors Rubin’s potential 

8. At the time this was an important commodity in The Netherlands, as illustrated by the theme of 
one of Van Gogh’s most famous paintings, “the potatoeaters.”
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outcome framework (albeit with a continuously valued treatment), and 
the close connection may partly explain why the potential outcome 
framework found such a receptive audience in econometrics in the 1990s 
for studying general causal questions. However, to estimate the demand 
function, we cannot simply adjust for observed confounders and compare 
quantities at days with high and low prices, as an approach based on the 
unconfoundedness assumption would suggest. Prices are not set ran
domly, not even after conditioning on observed market characteristics. A 
more plausible framework adds a supply function that describes the 
quantity that sellers are willing to sell at any given price. A simple model 
for the assignment mechanism is, then, that prices are determined by 
market equilibrium: that is, by the intersection of the dayspecific 
demand and supply functions. These ideas are all clearly articulated in 
Tinbergen (1930) and familiar from introductory econometrics textbooks. 
Tinbergen proceeds to use instrumental variables to estimate the slope of 
the (linear) demand function. Despite the lack of data (only eight observa
tions!), the entire approach feels very modern.

Similarly, Haavelmo (1943) appears modern in the explicit causal inter
pretation of the estimands in his models in terms of a hypothetical 
experiment:

“Assume that if the group of all consumers in society were repeatedly 
furnished with the total income, or purchasing power, r per year, they 
would, on the average, or ‘normally,’ spend a total amount   for con
sumption per year, equal to

where α and β are constants.” (Haavelmo (1943), p. 3) 

Interestingly, Haavelmo’s notion of the average or normal amount spent 
for different values of total income is very similar to what Neyman (Spla
waNeyman et al. (1990)) calls the “true yield” in an agricultural setting, 
although there is no reference to Neyman’s work on the analysis of exper
iments in Haavelmo’s work. In his Prize lecture (Haavelmo (1992)), Haav
elmo acknowledged the influence of Neyman on his work, but this influ
ence appears primarily in the probabilistic approach (e.g., Haavelmo 
(1944)), rather than in the area of causality.9

Over the years, this literature became the foundation of empirical work 
in economics. Much of the methodological work generalized the specific 

9. Haavelmo met Neyman in 1936 in the UK, as well as during his visit to the United States in 1939, 
see Bjerkholt (2007).
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settings considered by Tinbergen and Haavelmo to accommodate more 
complex theoretical models.

Over time, some of the clarity in the Tinbergen and Haavelmo work 
was lost. In the 1960s and 70s, theoretical econometricians had 
 developed more general methods for simultaneous equations models 
with arbitrary numbers of endogenous and exogenous variables, for 
example in a common generic form:

YB+ ZΓ =U,

where the Y represents endogenous variables and Z the predetermined 
variables, either exogenous or lagged dependent variables, and the U rep
resents unobserved error terms, with some restrictions on the unknown 
parameters B and Γ. In this generalization, the potential outcome notation 
that was clear in the Tinbergen and Haavelmo work was dropped, along 
with the explicit assignment mechanism, and omitted variable bias and 
true simultaneity were lumped together under the generic rubric of 
“endogeneity” that defied clear and unambiguous definitions. As Tinber
gen wrote in his 1969 Prize lecture,

“Sometimes indeed some of our followers overdo model building.” 
(Tinbergen (1981), p. 18)

While the technical progress in this literature was impressive, it came at a 
substantial cost. Statisticians lost track of what this literature had to offer 
them. Phil Dawid complained, “I despair of ever understanding the logic 
of simultaneous equations well enough to tackle them,” (p. 24, Dawid 
(1984)) in a comment on Pratt and Schlaifer (1984), and David Cox wrote 
that specification of causal models should satisfy conditions that “pre
cludes the use of y2 as an explanatory variable for y1 if at the same time y1 
is an explanatory variable for y2 ,” (p. 294, Cox (1992)), ruling out a com
mon specification of simultaneous equations models.

Empirical work using these highly technical methods also faced 
increasing skepticism within economics, leading to a widening gulf 
between econometricians and researchers doing empirical work. Hendry 
(2000) questioned the credentials of econometrics in a paper with the 
title “Econometrics: Alchemy or Science?” Edward Leamer, in a paper 
with the famous title “Let’s Take the Con Out of Econometrics,”10 
bemoaned that the credibility of empirical work was at a low:

10. Recently, giving a guest lecture in my firstyear econometrics class, Leamer suggested that an 
even better title could have been “Who put the trics into Econometrics.”
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“This is a sad and decidedly unscientific state of affairs we find our
selves in. Hardly anyone takes data analyses seriously. Or perhaps 
more accurately, hardly anyone takes anyone else’s data analyses seri
ously. (p. 37, Leamer (1983))”

Leamer made a clear distinction between observational studies and stud
ies using experimental data, with the latter not subject to his main con
cerns (“There is therefore a sharp difference between inference from ran
domized experiments and inference from natural experiments”, p. 33, 
Leamer (1983)). He saw observational studies as the mainstay of empiri
cal economics, with randomized experiments being rare. To illustrate his 
concerns, he compared various least squares regression estimates of the 
deterrence effect of the death penalty, using state/year murder rates as the 
outcome in a linear model setting, and concluded that by choosing differ
ent specifications for the regression models one could justify positive and 
negative effect estimates. To improve the credibility of empirical work, or 
at least to be clear about its limits, Leamer suggested making sensitivity 
analyses a more routine part of empirical work. Although there were ear
lier influential examples of such sensitivity analyses (Cornfield et al. 
(1959)), they were not then, nor are they now, a routine part of empirical 
work.11

Around the same time LaLonde (1986), with the less controversial title 
“Evaluating the Econometric Evaluations of Training Programs with 
Experimental Data,” made a point similar in spirit to the Leamer paper, 
but in a narrower setting. In a paper based on his PhD thesis supervised 
by Orley Ashenfelter, LaLonde took data from an experimental evaluation 
of a job training program, the National Supported Work (NSW) program. 
The program was effective, with a precisely estimated and substantial 
effect on subsequent annual earnings of around $850. LaLonde then 
introduced an extremely important validation exercise. He put aside the 
control group from the randomized experiment and tried to replicate the 
experimental results (specifically the $850, but also average effects for 
subsamples) using various nonexperimental comparison groups con
structed from public use surveys. To estimate the effects with these com
parison groups he used a variety of stateoftheart econometric methods 
relying on different identification strategies.12 One can interpret the 

11. Much interesting work has been done in this direction (Rosenbaum and Rubin (1983a), Imbens 
(2003), Andrews et al. (2017)). It continues to be an active area, with additional insights from the 
work on partial identification initiated by Manski (Manski (1990), Manski et al. (1992)). Neverthe
less, it has not become as routine as Leamer might have hoped, or as it should be.
12. Strategies that describe how one can infer the causal effects of interest from observational stud
ies. See for general discussion Angrist and Krueger (1999).
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LaLonde exercise as the causal equivalent of the outofsample validation 
that is very common in the modern machine learning literature for com
paring the performance of predictive estimation methods. The challenge 
in validating methods for estimating causal effects in observational stud
ies, as opposed to validating predictive methods, is that this cannot be 
done without additional information or assumptions. Traditionally many 
econometric studies evaluated the performance of new methods assuming 
the identifying assumptions held. But of course, the real question is 
whether the maintained assumptions are at least approximately correct. 
To assess that question, one needs additional information to estimate the 
ground truth. In LaLonde’s case, this comes in the form of a randomized 
experiment.

LaLonde concluded that the stateoftheart methods did not deliver 
on their promise. In the abstract, he writes that:

“This comparison [of experimental and observational methods] 
shows that many of the econometric procedures do not replicate the 
experimentally determined results, and it suggests that researchers 
should be aware of the potential for specification errors in other non
experimental evaluations.” (p. 604, LaLonde (1986))

This is followed by the recommendation in the conclusion that:

“... policymakers should be aware that the available nonexperimental 
evaluations of employment and training programs may contain large 
and unknown biases resulting from specification errors.” (p. 617, 
LaLonde (1986)) 

Although subsequent research has questioned part of the conclusion by 
bringing in additional flexible methods based on unconfoundedness 
assumptions (see Dehejia and Wahba (1999)), LaLonde’s paper was influ
ential and led policymakers in the United States Congress to insist on the 
inclusion of experimental evaluation components in many labor market 
programs. It also played a role in motivating the work by Abhijit Banerjee, 
Esther Duflo and Michael Kremer that made experimentation a regular 
tool in the empirical economist’s toolkit, leading to their Prize in 2019 
(Banerjee (2020), Duflo (2020), Kremer (2020)).

In the long run, these two papers, Leamer (1983)) and LaLonde (1986), 
had a dramatic impact on empirical and methodological work in general, 
and both featured prominently in all three Prize lectures in 2021. Even 
though the two specific recommendations (sensitivity analyses as sug
gested by Leamer, and randomized experiments as suggested by 
LaLonde), had some immediate effect, the longterm impact went far 
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beyond that in clarifying the standards by which empirical work as well as 
econometric methods should be measured.

This longterm impact took two directions. First, the Princeton labor 
group led by Orley Ashenfelter took a route that was not suggested, 
explicitly or implicitly, in the Leamer and LaLonde papers. In what 
Joshua Angrist and Steve Pischke later called the “credibility revolution,” 
the Princeton group focused on applications that were believable, and 
that not just the authors but also other researchers and policymakers 
would, in Leamer’s words, “take seriously.” But importantly, these studies 
were not based on explicit randomization in controlled experiments. 
Instead, they relied on natural experiments, exploiting idiosyncratic varia
tion induced in the causes of interest. As my tenyearold daughter said in 
an interview with the Stanford media team on October 11th, “you do 
experiments without actually doing your own experiments.” Wellknown 
examples of such natural experiments include Angrist (1990), Angrist and 
Krueger (1991), Card (1990), Ashenfelter and Krueger (1994), Meyer, Vis
cusi, and Durbin (1995), Card and Krueger (1994), Imbens, Rubin, and 
Sacerdote (2001). 

Second, the Leamer and LaLonde papers inspired new methodological 
work with the goal of ensuring that empirical research would be taken 
seriously, and that it could be demonstrated to be credible. It is the econo
metric methods part of this credibility revolution to which my work with 
Joshua Angrist contributed.

6. CAUSAL INFERENCE AND THE CREDIBILITY REVOLUTION

Most of my career has been focused on developing econometric meth
ods that enable empirical researchers to obtain credible estimates of 
causal effects to inform decision makers, in the spirit of Gary Chamber
lain’s view of econometrics as applied decision science (Chamberlain 
(2000)). The key themes of this research are transparency around the 
critical assumptions, understanding the limits of what data can credibly 
tell us, and making the research accessible to the broader social science 
community. Many of these methods take what David Card in his 2021 
Prize lecture (Card (2022)) calls a design-based perspective, with an 
emphasis on understanding the assignment mechanism. These methods 
have helped bring together the statistics and econometrics traditions, 
partly through collaborations with Donald Rubin (e.g., Imbens and 
Rubin (2015)). As a result, they have inspired research in the statistics 
literature on traditionally econometric topics like instrumental varia
bles, and research in econometrics that build on traditional statistics 
topics such as matching methods and experimental design.

In this section I discuss three sets of papers that illustrate these 
themes. In the first, I discuss my work on local average treatment effects 
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with Joshua Angrist (Imbens and Angrist (1994)), later extended in 
(Angrist, Imbens, and Rubin (1996)) and summarized in Imbens (2014). 
This work built on the potential outcome framework developed in the 
statistics literature by Donald Rubin (Rubin (1974)) and combined it with 
traditional econometric ideas involving instrumental variables. In the sec
ond subsection I discuss my work with Joshua Angrist and Kathryn 
Graddy (Angrist, Graddy, and Imbens (2000)), which extended these 
ideas to the classic supply and demand models studied in Tinbergen 
(1930), and also Angrist and Imbens (1995) which extended the local aver
age treatment effect ideas to the multivalued treatment setting. The third 
paper is my most applied paper, Imbens, Rubin, and Sacerdote (2001), in 
which we estimated the effect of unearned income on labor earnings. This 
paper motivated additional methodological research on the problems 
related to estimating causal effects in settings with multivalued and con
tinuous treatments, extending the potential outcome literature from the 
binary treatment case and freeing up functional forms.

6.1. Local Average Treatment Effects

One of the early conversations I had with Joshua Angrist after I joined 
the Harvard economics department in 1990 was about his PhD thesis, 
published as Angrist (1990). In this paper Angrist is interested in the 
causal effect of serving in the military (denoted by Wi) on earnings 
(denoted by Yi).13 The concern is that a simple comparison of earnings 
between veterans who served in the military, and nonveterans who did 
not serve, is not credible. Like the comparisons of murder rates in states 
with and without the death penalty in Leamer (1983), it would be diffi
cult to convince readers that there is no omitted variable bias in a com
parison of veterans and nonveterans, even if one controls for various 
observed characteristics of the individuals in an approach based on the 
unconfoundedness assumption. Angrist follows a different approach, in 
what became one of the canonical examples of a natural experiment. 
During the Vietnam War there was a compulsory draft, where draft pri
ority within a birth year cohort was determined by a lottery tied to an 
individual’s date of birth. Simplifying the procedure somewhat: think of 
the lottery as randomly assigning men born in a particular year to two 
groups, those who were drafteligible and those who not, denoted by Zi 

∈ {0, 1}. Just as in a randomized experiment, these two groups are com
parable ex ante. Of course, the causal effect of being drafteligible is not 
itself a very interesting object. Instead, Angrist focused on the effect of 
actually serving in the military on earnings, using the indicator for draft 

13. To simplify the discussion I will here use the notation Wi ∈ {0, 1} rather than Wi ∈ {C,E} as in 
Section 3.
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eligibility as an econometric instrument. It was clear that the instrument 
did change the probability of serving in the military substantially, and so 
the instrument is correlated with the endogenous variable, and thus sat
isfies what Staiger and Stock (1997) called the relevancy condition. It also 
seemed plausible that it satisfied the exclusion restriction, that the only 
effect of being drafteligible was through actually serving in the military, 
although I return to that assumption later. Even if we believe those two 
assumptions, it is not clear that they are sufficient to credibly estimate 
the effect of military service on earnings. On the one hand, from a clas
sical textbook econometrics’ perspective, this approach seems perfectly 
fine. In such a textbook version, and in line with Angrist (1990), one 
might write the economic model as

with the instrument Zi (a binary indicator for drafteligibility) uncorre
lated with εi so that the standard instrumental variables estimator

is a consistent estimator for τ. Two influential papers gave us pause 
regarding this argument: Heckman (1990) and Manski (1990). Both went 
beyond the textbook instrumental variables set up with constant effects 
and used something akin to the potential outcome framework that Rubin 
was advocating for in the statistics literature. 

Let (Yi(0), Yi(1)), denote the two potential outcomes for earnings as a 
function of veteran status. This set up naturally allowed for general heter
ogeneity in the causal effect. Allowing for general heterogeneity was criti
cal because an assumption that the causal effect was identical for all indi
viduals was not credible. As Heckman wrote in his 2001 Prize lecture on 
microeconometrics, “Accounting for heterogeneity and diversity and its 
implications for economics and econometrics is ... a main theme” (p. 675, 
Heckman (2001)). However, Heckman and Manski both showed, in differ
ent ways, that in this setting it was not possible to identify the average 
effect of military service,

without additional assumptions. Heckman showed that identification of 
this average effect, which appeared to be a natural benchmark, required 
values z for the instrument, such that the probability of being a veteran, 
conditional on the instrument, pr(Wi = 1|Zi = z) was arbitrarily close to 

 

𝑌𝑌! = 𝛼𝛼 + 𝜏𝜏 × 𝑊𝑊! + 𝜀𝜀! , 
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zero and one. This clearly did not hold for the draft lottery application, 
where many men who were drafteligible did not serve, and many who 
were not draft eligible did. At the same time, Manski derived large sample 
sharp bounds on the average effect of veteran status for this binary 
instrument case. These bounds would collapse into a single point only 
under the same condition as used by Heckman: that the probability of 
being a veteran, conditional on the instrument, took on values arbitrarily 
close to zero and one.

In my early discussions with Angrist, many on Saturday mornings in 
the local laundromat,14 our initial, narrow goal was to reconcile the appar
ent credibility of the draft lottery example with the negative identification 
results in Heckman (1990) and Manski (1990). To do so, a key step was to 
go beyond the latent index models that were popular in the discrete 
choice literature at the time. In that approach, the decision to serve in the 
military would be modelled through a latent index crossing a threshold:

Although we initially worked within that traditional latent index frame
work, our then colleague at Harvard, Gary Chamberlain, suggested that it 
would improve transparency to remove what he called “the somewhat 
mysterious variable νi,” and to use a potential outcome notation not just 
for the outcomes, but also for the decision to serve in the military. Here, 
the pair of potential treatment values,

Wi(0),Wi(1),

denotes whether a particular individual would serve if drafteligible (the 
potential outcome Wi(1)), and whether they would serve if not drafteligi
ble (the potential outcome Wi(0)). This notation greatly clarified our argu
ment and made clear that there are, in principle, four different types of 
individuals:15

14. As junior faculty we were both living in Harvard faculty housing units that shared a laundromat.
15. A similar classification appears in Permutt and Hebel (1989).
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1 complier always-taker 
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Why is it useful to think about these four latent types? There are three 
advantages to this setup. First, the latent types clarify why we could not 
hope to estimate the overall average effect of military service, the result 
that Heckman and Manski had proved earlier. Nevertakers by definition 
do not serve, so we cannot use these data to learn about what would hap
pen if they did. Thus, it immediately implies that we cannot estimate the 
average effect for the nevertakers, and as a result we cannot estimate the 
overall average effect. Similarly, we only see alwaystakers in the veteran 
state and cannot estimate what their earnings would be like if they did not 
serve.

Second, the setup allows us to assess more deeply the plausibility of 
the exclusion restriction: the assumption that the instrument, draft eligi
bility, does not have a direct effect on earnings, but only an indirect effect 
through military service. Third, the setup showed that we have a rand
omized experiment for compliers. Thus, we could directly estimate the 
average effect for compliers if only we could observe who these compliers 
were.

Let us examine the last two benefits in more detail. To assess the 
plausibility of the exclusion restriction that there is no direct effect of 
drafteligibility on outcomes, consider separately the nevertakers and 
alwaystakers. These are very different subpopulations, and the force of 
the exclusion restriction is very different for them. Consider an always
taker, who had already made up his mind, prior to the draft lottery, to 
volunteer for the armed services. There is no reason why he would even 
be interested in knowing his draft lottery number. The value of the lot
tery number does not affect his options or his choices at that point. For 
such an individual, the exclusion restriction appears highly plausible. 
Things are less clear for nevertakers. Suppose a nevertaker does not 
serve in the military, even if drafted, because of a medical exemption. 
In that case it is plausible that drafteligibility is irrelevant and does not 
have a substantive effect on subsequent labor market outcomes. On the 
other hand, a nevertaker could be someone who is in principle fit to 
serve but has strong preferences not to do so. If such a person has a 
favorable draft lottery number, they do not have to serve. However, if 
they have an unfavorable draft lottery number, they must take specific 
actions to stay out of the military. There is anecdotal evidence that 
people did this by moving to Canada, staying in school longer to get 
educational deferments, or even injuring themselves. If there are many 
such individuals, and if such actions affect the outcomes of interest, the 
exclusion restriction could be violated in a meaningful way. By defining 
the four compliance types, it is easier to assess the plausibility of the 
critical assumptions.
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It was clear that, if the type of an individual was observed, we could 
simply partition the sample by type. Conditional on these latent types, 
unconfoundedness holds, and so we can give the comparison of out
comes for veterans and nonveterans of the same type a causal inter
pretation. However, even if we observed the type of each individual 
directly, we would not be able to estimate the treatment effect for nev
ertakers and compliers, because nevertakers (alwaystakers) are not 
observed in the treatment (control) group (though their observed out
comes could be used to estimate bounds). Nevertheless, if we were to 
observe the latent type, we could directly estimate the average effect of 
the treatment for compliers and defiers. The problem with this 
approach is that we cannot infer the type of an individual with cer
tainty from the data on drafteligibility, veteran status, and earnings.

To make progress, Angrist and I added one more assumption, the 
monotonicity condition. We assumed there were no defiers who do the 
opposite of their assignment: that is, there are no people who serve if 
they do not get drafted, but do not serve if they do get drafted. In that 
application monotonicity appears to be fairly plausible, and the fraction 
of defiers would appear to be small, if there are any such individuals. In 
other applications, monotonicity may be a controversial assumption. In 
particular monotonicity is less plausible in what are now called judge 
leniency designs, (e.g., Kling (2006), Aizer and Doyle Jr (2015)).

In that class of applications, the instrument is the identity of a judge 
(or other screening agent) who changes the likelihood of sentencing (or 
other treatment, see also Example 2 in Imbens and Angrist (1994)). It is 
plausible that one of the judges is, on average, more lenient than 
another judge, making the instrument relevant. However, it is less plau
sible that monotonicity holds because that would require anyone whom 
the lenient judge sentences to also be sentenced by the stricter judge. It 
may well be that, despite being more lenient overall, the lenient judge 
cares more about some offenses than the strict judge.

Given the monotonicity assumption, we still cannot infer the type for 
all individuals, but we can infer it for some. As illustrated in Table 2, we 
can infer that someone who does not serve in the military despite being 
drafteligible must be a nevertaker. Similarly, individuals who serve 
despite not being drafteligible must be alwaystakers. We cannot infer for 
sure whether someone who does not serve and who was not drafteligible 
is a nevertaker or a complier, and similarly for someone who serves and 
who is drafteligible we cannot tell whether they are compliers or 
alwaystakers.
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The final step in this project involves disentangling the mixtures probabil
istically. We know that the subsample that was not drafteligible and that 
did not serve (individuals with Zi = 0 and Wi = 0) is a mixture of compli
ers and nevertakers. To infer the distribution of outcomes for compliers 
in this subsample, we use the fact that we can estimate the distribution of 
outcomes for nevertakers by looking at a different subsample, namely the 
subsample of individuals who did not serve despite being drafteligible, 
and that therefore consists of nevertakers. This allows us to disentangle 
the mixture and estimate the distribution of nonveteran outcomes for 
compliers. Similarly, we can estimate the veteran outcomes for compliers 
using the other two subsamples. 

Combining the estimates of the two distributions of veteran and 
nonveteran outcomes for compliers allowed us to estimate the average 
effect of veteran status for compliers, or what Angrist and I called the 
Local Average Treatment Effect. The Local Average Treatment Effect or 
“LATE” is a somewhat unusual estimand. Questions were raised ini
tially regarding its relevance for policy and therefore its usefulness for 
empirical research.16 The main concern at the time was that it appeared 
opportunistic. The standard approach to identification was to first state 
what the target estimand was, and then to articulate the identification 
strategy through assumptions that would allow one to identify that esti
mand.17 Angrist and I turned this strategy around and introduced an 
alternative way to study identification questions. Rather than start with 
an estimand and ask if and how we could identify that, we started by 
asking what we could identify under reasonable assumptions. This led 
to the discovery that a popular estimation method, instrumental varia
bles, did estimate a meaningful object, one with a clear causal interpre
tation. We then characterized what exactly that interpretation was. 
Because these assumptions were substantially weaker than those 
required for the identification of a benchmark estimand, such as the 
overall average treatment effect, this enabled researchers to interpret 

16. See the discussion in Deaton (2010) and Imbens (2010).
17. If the assumptions that guaranteed pointidentification were too strong, Manski (1990) argued 
for reporting bounds on the estimand.
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their results under more plausible assumptions than they used 
previously.

Another, related, concern is that the LATE estimates the average effect 
for a subpopulation that cannot directly be identified. We do not know 
whether any given individual is a complier or not. Moreover, this subpop
ulation is indexed by the instrument, and so the LATE is not necessarily 
invariant to the assignment mechanism. However, we may be able to 
make some inferences about this subpopulation. If we observe character
istics, say age, for all individuals, we can estimate the average age for 
compliers, and thus learn something about the characteristics of this sub
population, using the results in Abadie (2003).

A third concern is the policy relevance of the LATE estimand. The rele
vance varies by application. In the draft lottery example, one could argue 
that the average effect for the compliers, who were actually affected by the 
draft, is more interesting than, say, the average effect for nevertakers or 
alwaystakers, or even than the overall average effect. Analogously, in the 
Angrist and Krueger (1991) study of the returns to education, the com
plier subpopulation is that of people who might be induced to stay in 
school a little longer by changing compulsory schooling laws. Again, that 
is likely to be a subpopulation of great interest to policymakers working 
on high school attendance. On the other hand, this LATE is clearly less 
informative about, say, policies that affect college attendance.

These concerns notwithstanding, the LATE is an important compo
nent in the decision process for policymakers, as it provides credible esti
mates of causal effects under transparent assumptions that are substan
tially weaker than those employed previously. Most importantly, it liber
ated part of the econometric causal literature from functional form and 
homogeneity assumptions. It also improved the understanding of popular 
estimation methods that allowed for more transparent communication 
with other disciplines.

6.2. Multi-valued Endogenous Variables

The LATE paper focused primarily on the simplest possible instrumental 
variables setting, a single binary endogenous variable, a single binary 
instrument, and no exogenous variables. That led to a paper that, in its 
published version, was very short and clear,18 no doubt a part of its subse
quent popularity. As a result, we did not consider many generalizations. 
This includes the case with covariates which did not appear to raise sub
stantial conceptual issues. In the LATE paper, we did briefly discuss the 
case with multivalued discrete instruments. At that time, we were not 

18. This was not all our doing, but partly the result of the handling editor pushing us to shorten the 
paper substantially from its first submitted version, unquestionably improving it in the process.
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particularly concerned with the extension to multiple distinct instru
ments; finding good instruments is rare enough that finding multiple dis
tinct instruments is uncommon in empirical work. One special case 
where multiple instruments are common arises when the instruments are 
generated by interacting a single basic instrument with indicators for sub
populations. The leading example is Angrist and Krueger (1991), where 
indicators for quarter of birth were interacted with indicators for year and 
state of birth. That generated interesting theoretical work later, e.g., Bek
ker (1994), Staiger and Stock (1997). See Chamberlain and Imbens (2004) 
for a hierarchical random effects approach to such settings.

The most challenging case not considered in the LATE paper con
cerned multivalued or multiple endogenous variables. We made some 
progress towards understanding this case in two subsequent papers. 
First, in Angrist and Imbens (1995), we focused on the setting analyzed in 
Angrist and Krueger (1991) which studied the effect of years of education 
on earnings using compulsory schooling laws as instruments (through 
the way these laws differentially affect people born in different parts of 
the year and in different states). Second, we teamed up with Kathryn 
Graddy (in Angrist, Graddy, and Imbens, 2000) to study the classical 
simultaneous equations setup in the form of a supply and demand setting, 
using the data Kathryn had collected for her PhD thesis at Princeton 
(Graddy, 1995) to illustrate our theoretical results.

The first part of the LATE setup with the potential outcomes does not 
change if the treatment takes on more than two values. The combination 
of the exclusion restriction and the assumed exogeneity of the instrument 
implies that we can think of a set of potential outcomes Yi(w) that are all 
independent of the instrument:

Zi ⊥⊥ Yi(w), (2)

possibly after conditioning on some exogenous covariates. The mono
tonicity assumption is different, however. In Angrist and Imbens (1995) 
we extended the monotonicity condition from the binary case (maintain
ing the binary instrument setting) to the multivalued treatment case by 
assuming

Wi(1) ≥ Wi(0), ∀ i, (3)

(or Wi(1) ≤ Wi(0) for all units). In the compulsory schooling case, this 
makes sense: it is satisfied if tightening compulsory schooling laws 
increases the amount of schooling received or leave it unchanged, but 
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cannot decrease it.19 However, there is an important difference with the 
binary treatment case. In the multivalued treatment case, the mono
tonicity condition in (3) implies a stochastic dominance relation for the 
conditional distribution of treatments, given the two values for the instru
ment, leading to a number of testable inequality restrictions.20 In contrast, 
in the binary treatment case there are no restrictions implied by this 
assumption.21 Under these two assumptions (2) and (3), the same esti
mand as in the binary treatment case (the ratio of the covariance of the 
outcome and the instrument and the covariance of the treatment and the 
instrument), has an interpretation as a weighted average of average causal 
effects of unit increases in the treatment, weighted by the share of com
pliers for that level of the treatment:

With

This is obviously a more complex estimand than in the binary case, and it 
highlights the challenges when a single binary instrument is used to infer 
causal effects in a more complex environment with multivalued 
treatments.22

In the second paper, Angrist, Graddy, and Imbens (2000), we focused 
on the classic problem in econometrics: disentangling supply and demand 
functions with data on quantities and prices over time. This problem goes 
back to Tinbergen (1930). In his study, Tinbergen was interested in esti
mating the demand for potato flour using data on prices and quantities of 
potato flour traded between the Netherlands and France (see Hendry and 
Morgan (1997) for additional discussion). Kathryn Graddy had collected 
data on prices and quantities from the Fulton Fish Market in New York.23 
In our joint paper we use just a subset of these data. See Graddy (1995) 

19. By tightening the compulsory schooling laws, I mean changing them in a way that the schooling 
required from someone who wishes to leave as early as is legally allowed is weakly increased.
20. These restrictions are different from the ones on the outcome distributions implied by the 
instrumental variables set up in the binary treatment / binary instrument case that are discussed in 
detail in Kitagawa (2015).
21. There are some restrictions on the outcome distributions, see Kitagawa (2015).
22. Recent work has explored alternative extensions of the monotonicity condition to the multival
ued treatment setting in the case with multiple instruments, see Mogstad, Torgovitsky, and Walters 
(2021).
23. Collecting data in this case sounds much simpler than it was. Graddy directly collected informa
tion on prices and quantities of whiting for all transactions by one particular dealer throughout the 
early morning that the market was open.
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22 Recent work has explored alternative extensions of the monotonicity condition to the multi-valued 
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for more details. For our purpose, quantities were aggregated daily, and a 
single price was calculated for each day. Simply looking at the correlation 
between the logarithm of quantities and the logarithm of prices obviously 
does not tell us very much. Instead, we imposed a standard supply and 
demand model. We assumed buyers would come to the market on day t 
with an aggregate demand function Dt(p), describing the quantity they 
would be willing to purchase for any given price p. This part is similar to 
the structure Tinbergen (1930) used and naturally matches the Rubin 
potential outcome framework that by the time of our fish paper had 
become popular in the causal inference literature. Similarly, we postu
lated the existence of a supply function for each market, St(p). We then 
assumed the price observed in market t was the equilibrium price that 
cleared the market:

and the quantity observed in market t is the quantity corresponding to 
demand and supply at that equilibrium price,                                         None 
of this was new, and arguably is underlying the textbook simultaneous 
equations model. However, being explicit about the potential outcomes 
and the assignment mechanism (in this case the market clearing equilib
rium condition) allowed us to make this accessible to statisticians.24

Now suppose we have an instrument that affects the supply function, 
but not the demand function. In Angrist, Graddy, and Imbens, 2000, fol
lowing Graddy (1995), these are weather conditions at sea in the preced
ing days, specifically wave height and wind speed. Assume that these sat
isfy the instrument conditions: that they are both exogenous with respect 
to the unobserved components in the demand function, and do not 
directly affect demand, but do affect supply, all of which are plausible 
assumptions in this setting. In the case with a linear demand function, 
the textbook results on simultaneous equations imply that the instrumen
tal variables estimator then delivers the slope of the demand function, the 
price elasticity of demand. More generally, we showed in Angrist, Graddy, 
and Imbens, 2000 that when demand functions are nonlinear and may 
differ between markets beyond an additive shift, an instrumental varia
bles strategy identifies a weighted average of conditional demand elastici
ties similar to that in (4). The conditioning is on markets where the sup
ply function is affected by the instruments, and the averaging is propor
tional to the effect of the instruments on the equilibrium price in each 
market.

24. When I presented this at a conference in Belgium, David Cox, who had earlier dismissed the log
ic simultaneous equations (Cox (1992)), commented that this was the first time he had understood 
what economists really meant by simultaneous equations models.
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6.3. Unconfoundedness and Continuous Treatments
The third paper, or set of papers, I want to discuss originated in a gradu
ate class Donald Rubin and I taught at Harvard in 1995. This was probably 
the firstever graduate class devoted entirely to causal inference, although 
the registrar’s office changed that to casual inference, leading to a much 
bigger turnout the first day than what we eventually ended up with. This 
class symbolized the convergence of the statistical and econometric tradi
tions in causal inference, with students attending from both departments 
and getting exposure to early work from both literatures.

From the outset, we asked which thought experiment or conceptual 
manipulation would allow you to observe the counterfactual you need for 
a causal effect. At some point, the discussion in class focused on the 
causal effect of child poverty on the labor market and other life outcomes. 
We discussed the fact that many estimates in the literature essentially 
compared children growing up in middleclass families with children 
growing up in poor families. Obviously, the treatment of interest is not 
moving the children from poor to middle class families. A more relevant 
treatment is making the poor families better off by giving them more 
financial resources. This eventually led to a suggestion by Bruce Sacer
dote (at the time a student in this class) to use the lottery as a natural 
experiment. The lottery can be thought of as randomly assigning yearly 
payments of substantial sums of money to individuals randomly selected 
from those buying lottery tickets. Of course, that is not quite the experi
ment we would have liked to have done, but it is close. The payments do 
not continue forever; they stop after twenty years. The population is not 
the general population, but only those buying lottery tickets. Compari
sons with the Current Population Survey suggested that this latter con
cern was not a major one. In the paper that came out of this discussion,25 
Imbens, Rubin, and Sacerdote (2001), we ended up focusing on a slightly 
different outcome. Instead of studying the effect of unearned income on 
child poverty, we studied the effect on labor market outcomes.26 Specifi
cally the focus was on the propensity to earn out of unearned income, per 
dollar of unearned income. This measures how much, on average, people 
reduce their labor earnings for every dollar they win in the lottery. It is the 
subject of an extensive literature using observational data (Pencavel, 
1986), with estimates ranging from –0.3 to 0.

Although collecting the data, with the help of the Massachusetts State 
Lottery Commission, was perhaps the biggest challenge in this project, it 
turned out there was still a need for careful statistical analysis despite the 

25. Another influential paper that originated in that class was Dehejia and Wahba (1999).
26. The reason for changing the focus away from child poverty was that the data we collected had 
too few families with young children.
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explicit randomization in the lottery. Comparing earnings in the year 
prior to winning the lottery for winners and losers (that is, individuals 
who won small onetime prizes) showed a difference in average earnings 
of –$3.5K, with a standard error of about $1.4K (winners earning less 
than losers). There were two main suspects for this difference. One was 
that the lottery does not randomize over individuals, it randomizes over 
tickets, and different individuals buy different numbers of tickets. On 
average, the winners reported having bought 4.6 tickets per week, com
pared to 2.2 for losers. The number of tickets bought may well be related 
to income. This did not turn out to be a big concern, with a regression of 
tickets bought on earnings leading to a coefficient of –0.78 with a stand
ard error of 0.93. Second, the survey response rate was less than 50%. 
Nonresponse was clearly not random. We could in fact infer directly that 
the nonresponse was not random, because we knew the size of the prize 
won for all individuals, irrespective of whether they responded to the sur
vey. Estimating a logistic regression of the indicator for response with the 
logarithm of the yearly prize as the regressor leads to a tstatistic of –3.5, 
showing that large winners were significantly less likely to respond to the 
survey. Given the clear evidence that in the sample the size of the prize 
was not completely random, we focused on analyses that adjust for the 
rich set of observable prewinning variables we had collected, including 
six years of prewinning annual earnings. This led to adjusted estimates 
for the marginal propensity to earn per dollar of unearned income, aver
aged over the six years postwinning, of –0.051, with a standard error of 
0.014.

Is this credible as a causal estimate? In Leamer’s words, should anyone 
take these numbers seriously? The answer is yes, and there are two rea
sons why. First, in the spirit of Leamer (1983) we investigated the sensi
tivity to a range of specifications and found the results to be robust. Sec
ond, and this is the recent type of analysis that is an integral part of the 
credibility revolution, we could look at placebo analyses. In the lottery 
example, we looked at the causal effect of prizes on earnings prior to win
ning. Of course, the causal effects on these (pseudo) outcomes are zero 
because people cannot anticipate winning the lottery. But given that we 
see a difference in average earnings between winners and losers prior to 
the lottery (–$3.5K, or 20%), the question is whether the statistical meth
ods are effective in removing that difference. With the lottery data, we did 
find that the adjustment methods we used (excluding earnings in the year 
prior to winning) did remove essentially all the differences between win
ners and losers in the year prior to winning the lottery (see Imbens 
(2015)). Where the adjusted average difference between winners and los
ers postlottery was about –$5.00K (standard error 1.36K), in the year 
prior to winning the lottery the raw difference was $3.50K, but the 
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adjusted difference was $0.10K (standard error 0.95K), lending support 
to the claim that the statistical adjustment was effective in removing 
prelottery differences between winners and losers, and thus that the esti
mates for the postlottery differences are credible causal estimates.

In the lottery paper, we used relatively simple adjustment methods 
based on least squares regression to estimate the propensity to earn out 
of unearned income, partly motivated by the relative similarity of the win
ners and losers samples. However, this led me to wonder whether the pro
pensity score methodology developed in Rosenbaum and Rubin (1983b) 
could be extended to the setting with multivalued treatments to estimate 
the doseresponse function                 that is, the average of the potential 
outcomes as a function of the treatment. Recall that in the binary treat
ment case, the unconfoundedness assumption is formulated as

implying here that we can compare people with high and low lottery 
prizes within subpopulations with the same values for all covariates. This 
can be challenging if this assumption relies on the researcher having 
many covariates. The RosenbaumRubin propensity score result states 
that one can eliminate all biases associated with the covariates by adjust
ing just for a scalar function of the covariates, the propensity score 
e(x) = pr(Wi = 1|Xi = x), irrespective of the number of covariates. In other 
words, unconfoundedness implies that

Wi ⊥⊥ Yi(0), Yi(1) | e(Xi),

where we condition only on the propensity score instead of the full covar
iate vector Xi. One can immediately extend the RosenbaumRubin result 
to the multivalued case where Wi ∈ {0, 1, … , J} by assuming the multiple 
treatment version of the unconfoundedness assumption:

Wi ⊥⊥ Yi(0),Yi(1), … , Yi(J) | Xi. (5)

This in turn implies that

Wi ⊥⊥ Yi(0),Yi(1), … , Yi(J) | pr(Yi = 1|Xi), … , pr(Wi = J|Xi). (6)

However, this strong unconfoundedness result requires conditioning on J 
propensity scores, rather than a scalar one as in the binary case. Espe
cially in settings where the cardinality of the treatment is substantial, this 
result does not reduce the dimension of the problem meaningfully. This 
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puzzled me at the time. It seemed counterintuitive that increasing the 
number of treatment values would fundamentally change the nature of 
the problem and make it much harder statistically. In 1998, Alan Krueger 
invited me to give a seminar at Princeton, and during that visit I spent a 
day sitting in the Industrial Relations Section thinking about this prob
lem. Perhaps inspired by the location where so many contributions to the 
credibility revolution had been conceived, I realized that one can simplify 
the problem of estimating average treatment effects to one that requires 
adjusting only for a scalar score even when J ≥ 2. A key step is the insight 
that, for estimation of the average treatment effects or the doseresponse 
function, we do not need independence of the treatment and the full set 
of J potential outcomes. Instead, it suffices to have a weaker form, what I 
labeled weak unconfoundedness in Imbens (2000), for one treatment level 
and the corresponding potential outcome at a time:

Although formally weaker, this assumption is not substantively weaker 
than (5). However, weak unconfoundedness has the advantage that it 
implies a propensity score type result where, just as in the original Rosen
baumRubin result, we only need to adjust outcomes for a scalar 
covariate:

where r(w, x) = pr(Wi = w|Xi) is the generalized propensity score. The key is 
that the conditioning variable, r(w, Xi) is different for different levels of 
the treatment. How can we use this result given knowledge of this gener
alized propensity score to estimate the doseresponse function                ? 
Imbens (2000) proposed a twostage procedure. First, estimate the con
ditional mean function

with two scalar arguments, the realized treatment wi and the probability 
of receiving the treatment actually received, r(Wi,Xi). This function is not 
causal in the sense that β(w, r) − β(w’, r) does not have an interpretation 
as an average causal effect. However, it can be used to estimate average 
potential outcomes through the equality
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where we evaluate r(w, Xi) at w, not at the realized treatment value Wi. An 
alternative to this twostage procedure is to reweight the observations, 
exploiting the equality

Both estimation approaches readily extend to the continuous treatment 
case. Hirano and Imbens (2004) illustrate these approaches to estimating 
causal effects in using the lottery data where the continuous treatment is 
the lottery prize. They consider parametric models for the generalized 
propensity score r(w, x) (the conditional distribution of the treatment (the 
lottery prize) given the covariates). In addition they use flexible regression 
models for the conditional mean function β(w, r) involving higher order 
moments and find that the results are robust to changes in the 
specification. 

7. LOOKING AHEAD

After these discoveries in the 1990s to the early 2000s, causal inference 
continues to be an exciting area. Researchers in a number of fields are 
developing new methods for credibly learning about causal effects in 
observational settings. They also continue to propose new designs for 
experiments that go beyond the simple treatment/control group experi
ments or A/B tests for which Fisher and Neyman laid the groundwork. 
Here I want to highlight three areas where exciting progress is being 
made, and where important challenges remain. All are characterized by 
the strong connections between empirical and methodological research 
that motivated the collaboration between Joshua Angrist and myself in 
the early 1990s.

7.1. Synthetic Control Methods and Difference-In-Differences

One particularly interesting strand of research is that on synthetic control 
methods, initiated by Abadie and Gardeazabal (2003) and Abadie et al. 
(2010), and the closely related recent work on difference-in-differences (see 
Roth et al. (2022) for a recent survey). In one of the canonical examples, 
Abadie et al. (2015), the authors study the causal effect of German reuni
fication on West German Gross Domestic Product using data on GDP for 
West Germany and other countries both before and after the German 
reunification. Traditionally, researchers might have employed regression 
methods, or matching methods where West Germany would be compared 
to another country, or a simple average of other countries. It is not clear 

where we evaluate r(w, Xi) at w, not at the realized treatment value Wi. An alternative to 

this two-stage procedure is to reweight the observations, exploiting the equality 
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lottery data where the continuous treatment is the lottery prize. They consider 

parametric models for the generalized propensity score r(w, x) (the conditional 

distribution of the treatment (the lottery prize) given the covariates). In addition they 

use flexible regression models for the conditional mean function β(w, r) involving 

higher order moments and find that the results are robust to changes in the specification.  

 

7. LOOKING AHEAD 

After these discoveries in the 1990s to the early 2000s, causal inference continues to be 

an exciting area. Researchers in a number of fields are developing new methods for 

credibly learning about causal effects in observational settings. They also continue to 

propose new designs for experiments that go beyond the simple treatment/control group 

experiments or A/B tests for which Fisher and Neyman laid the groundwork. Here I 

want to highlight three areas where exciting progress is being made, and where 

important challenges remain. All are characterized by the strong connections between 

empirical and methodological research that motivated the collaboration between Joshua 

Angrist and myself in the early 1990s. 

 

7.1. Synthetic Control Methods and Difference-In-Differences 

One particularly interesting strand of research is that on synthetic control methods, 

initiated by Abadie and Gardeazabal (2003) and Abadie et al. (2010), and the closely 

related recent work on difference-in-differences (see Roth et al. (2022) for a recent 

survey). In one of the canonical examples, Abadie et al. (2015), the authors study the 

causal effect of German re-unification on West German Gross Domestic Product using 

data on GDP for West Germany and other countries both before and after the German 

re-unification. Traditionally, researchers might have employed regression methods, or 

matching methods where West Germany would be compared to another country, or a 

simple average of other countries. It is not clear that such approaches would be 
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that such approaches would be satisfactory. Even taking out countryspe
cific averages in a differenceindifferences strategy is unlikely to be cred
ible, given the substantial heterogeneity that is likely to be present in dif
ferences between countries, both in trends and in levels. Abadie and 
coauthors proposed constructing a synthetic version of West Germany as 
a convex combination of the other countries. In practice this leads to a 
much better match for West Germany than any single other country. The 
basic synthetic control method as well as various extensions (Arkhangel
sky, Athey, Hirshberg, Imbens, and Wager (2021), BenMichael, Feller, and 
Rothstein (2021)), have in a short time found many applications in a wide 
range of fields, including studies of the effects of Brexit and the effects of 
country or statelevel COVID19 policies.

7.2. Interactions, Spillovers and Peer Effects

A second exciting area with much ongoing work has focused on settings 
with substantial interactions between units. This is important in settings 
with infectious diseases in epidemiology, but also in labor markets and 
other marketplaces. For example, the effect of a training program on a 
particular individual may well depend on the fraction of treated individu
als in their labor market. Crépon et al. (2013) illustrate this in an experi
mental evaluation consisting of multiple experiments in separate labor 
markets. Concerns about interactions are generally important in eco
nomic settings where individuals interact strategically in marketplaces. 
Understanding how to address these interactions in randomized experi
ments and in observational studies is at the core of a rapidly developing 
literature. One strand of this literature has focused on the design of 
experiments in settings with interactions (Bajari et al. (2021)) and the 
analysis of such experiments (Carrell, Sacerdote, and West (2013)). A sec
ond strand has focused on estimating peer effects in observational stud
ies (Manski (1993)).

7.3. Causality and Computer Science

Third, there is a fastgrowing literature in computer science on causality. 
Taking some of its cues from the path analyses developed by Wright 
(1920) (see Tinbergen (1940) for another early example of a graphical 
model) the work by Judea Pearl and others (Pearl (1995, 2000), Barein
boim and Pearl (2016), Richardson and Robins (2013), Peters et al. (2017)) 
uses Directed Acyclic Graphs (DAGs) and Structural Causal Models (SCMs) 
to study identification issues for causal questions. These methods have 
yet not caught on in econometrics as much as in other disciplines. The 
DAG approach has, potentially, two distinct benefits to offer to research
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ers. The first is primarily pedagogical, by formulating the critical assump
tions in a form that may capture naturally the way some researchers think 
of causal relationships. DAGs can be a powerful way of illustrating the 
key assumptions underlying causal models, the same way that path analy
ses and arrow schemes in (Wright, 1928, 1934, Tinbergen, 1940) did ear
lier. A second potential benefit is the mathematical tools developed in the 
recent DAG literature. For example, the docalculus developed by Pearl 
(2000) can be used by researchers to answer causal questions in a novel 
way. This second benefit is particularly relevant for questions in complex 
models with a large number of distinct components. One concern is that, 
in such settings, credible causal inference is particularly challenging irre
spective of the methods. That concern in the economics literature led to 
the 1980s credibility crisis in econometrics. See Imbens (2020) for addi
tional discussion of the relation of the graphical causal literature with the 
potential outcome literature.

A different part of causal inference literature where computer science 
ideas have made an impact has focused on improved methods for esti
mating causal effects in more traditional settings using modern machine 
learning methods. Here the use of supervised learning methods such as 
deep neural nets and random forests have proven helpful in improving 
methods for estimating average treatment effects (e.g., Chernozhukov et 
al. (2017)), and for estimating heterogeneous treatment effects and treat
ment policies (e.g., Wager and Athey (2018), Athey and Wager (2021)). In 
addition, generative adversarial networks and reinforcement learning 
methods are making inroads into econometrics (see Athey et al. (2021) 
and Chen (2022)).

8. CONCLUSION

The research on causality and causal inference recognized by the 2021 
Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 
continues to rapidly evolve and influence many traditional academic dis
ciplines. Its impact has been felt in many substantive areas where rand
omized experiments are difficult to implement. It is my hope that the 
award will bring more young researchers into this area and lead them to 
develop and apply methods that will enable policymakers to make more 
informed decisions, or in Tinbergen’s words from his 1969 Prize lecture, 
to find “ways of influencing actual development in some desired direc
tion” (p. 17 Tinbergen (1981)).
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