
Boltzmann Machines

Geoffrey Hinton

University of Toronto
&

Vector Institute

Hopfield Nets
(the version with states of 1 = active and 0 = inactive)

• The neurons are binary and the
weighted connections are symmetric.

• The global state of the whole network is
called a “configuration”.

• Each configuration has a goodness
which is simply the sum of all the
weights between pairs of active neurons.
– The energy of a configuration is

minus the goodness.

3 2 3 3

-1

-5

-1

1

11 0

0

- E = goodness = 4

Settling to an energy minimum

• The whole point of a Hopfield net is that
each neuron can easily compute what it
should do to minimize the global energy
(energy is badness).

– If the total weighted input coming
from other active neurons is positive,
turn on.

– If the total weighted input is negative

turn off.

• If each neuron keeps using this rule,
the network will settle to a configuration
that is an energy minimum.

3

-1

-5

-1

1

1

0

1 0

- E = goodness = 4

A configuration that is
an energy minimum

3 3 2

Settling to an energy minimum

• A Hopfield net can have many
different energy minima.

• Which minimum it ends up in
depends on where it starts.
– It can also be affected by the

order in which the neurons
are updated.

3 2 3 3

-1

-5

-1

0

0

1

1 1

- E = goodness = 5

A better energy minimum

A neat way to make use of this type of neural network

• Hopfield (1982) proposed that
memories could be energy minima
of a neural net.
– The binary decision rule can

then be used to “clean up”
incomplete or corrupted
memories.

– Start with the corrupted memory
and settle to an energy
minimum.

• Using energy minima to
represent memories gives a
content-addressable memory:
– An item can be accessed by

just knowing part of its
content.

– Settling to an energy minimum
then fills in the missing bits.

A different computational role for Hopfield nets

• Instead of using the net to store memories,
use it to construct interpretations of
sensory input.
– The input is represented by the states

of the “visible” neurons.
– The interpretation is represented by the

states of the “hidden” neurons.

• The energy represents the badness of the
interpretation. visible neurons

hidden neurons

Interpreting a line drawing as a 3-D object

Interpretation 1 Interpretation 2

Ambiguous line drawing

What can we infer about 3-D edges
from 2-D lines in an image?

• A 2-D line in an image could have
been caused by many different 3-D
edges in the world.

• The information that has been lost in
the image is the 3-D depth of each
end of the 2-D line.
– The end of the edge could be

anywhere on the line of sight.
– So there is a whole family of 3-D

edges that all correspond to the
same 2-D line.

You can only see one of these
3-D edges at a time because
they occlude one another.

eye

image
plane

line in
image

possible
3-D edge

A thought experiment: Interpreting a line drawing
• Use one “2-D line” neuron for each

possible line in the picture.
– Any particular picture only activates a

few of the line neurons.

• Use one “3-D edge” neuron for each
possible 3-D edge in the scene.
– Each 2-D line neuron tries to activate

all the 3-D edge neurons that could
project to that line.

– These 3-D edges compete by using
connections with negative weights

• Make 3-D edges support each other if
they join in 3-D.

• Make them strongly support each other
if they join at right angles in 3-D.

2-D lines

3-D edges

picture

+ -

Two difficult computational issues

• Using the states of the hidden neurons to
represent an interpretation of the input
raises two difficult issues:

– Search: How do we avoid getting
trapped in poor local minima of the
energy function?

– Learning: How do we learn the weights
on the connections to the hidden
neurons and between the hidden
neurons?

visible neurons

hidden neurons

Noisy networks find better energy minima

• A Hopfield net always makes decisions
that reduce the energy.
– This makes it impossible to escape

from local energy minima.

Stochastic binary neurons use random
noise to escape from poor minima.

– Noise allows the state of the neuron
to occasionally go uphill in energy.

A B C

0
0

1

probability of
adopting a
state of 1

total input

output

total input

1

0
0

Interpreting a binary image with stochastic binary neurons

• Clamp the binary image on the visible
neurons and start from a random binary
state for each of the hidden neurons.

• Pick a hidden neuron, compute the total
input it is getting given the binary states
of the other neurons, and update its state.
– If the total input is big and positive it

nearly always turns on.
– If the total input is big and negative it

nearly always turns off.
– For smaller total inputs it behaves

more randomly.

• Keep picking hidden neurons
and updating their states until
the whole network
approaches thermal
equilibrium (explained later)

• The states of the hidden units
are then an interpretation of
the binary image.
– Low energy interpretations

will be more probable than
high energy ones.

Interpreting a line drawing

2-D lines

3-D edges

picture

If we can learn the
right weights on the
connections, the low
energy interpretations
will be sensible
interpretations.

Thermal equilibrium

• Thermal equilibrium is a difficult concept!
– Reaching thermal equilibrium does

not mean that the system has settled
down into the lowest energy
configuration.

• The thing that settles down is the
probability distribution over
configurations.
– This settles to the Boltzmann

distribution.
– The probability of finding the system

in a configuration is determined solely
by the energy of that configuration.

• There is a nice intuitive way to think
about thermal equilibrium:
– Imagine a huge ensemble of

systems that all have exactly the
same energy function.

– Each system makes its own
random decisions when it updates
the states of its neurons

• The probability of a configuration is
just the fraction of the systems that
have that configuration.
– After a while these fractions do

not change.

Generating a binary image with stochastic binary neurons
(letting the network dream)

• Start by picking a random binary state for
each of the hidden and visible neurons.

• Then pick a hidden or visible neuron,
compute the total input it is getting given the
binary states of the other neurons, and
update its state.
– If the total input is big and positive it

nearly always turns on.
– If the total input is big and negative it

nearly always turns off.
– For smaller total inputs it behaves more

randomly.

• Keep picking hidden or
visible neurons and
updating their states
until the whole network
approaches thermal
equilibrium.

• The states of the visible

neurons are then a
binary image generated
by the network.

The aim of learning in a Boltzmann Machine

• The aim of the learning is to make the images that the network
generates when it is dreaming resemble the images it sees when
it is perceiving the world.
– If we can achieve this, the states of the hidden neurons will be

a good way to represent the underlying causes of an image.

• Learning the weights in the network is equivalent to figuring out
how the hidden neurons should be used to model the structure in
the images it perceives.
– This seems like a very hard problem.

An outrageously optimistic approach

• Start with a neural net that has a lot of hidden
neurons with random weights.

• Show it a very large number of images.

• Hope that the network can learn for itself how to
use the hidden neurons to model the underlying
causes of images.
– e. g. 3-D edges are the underlying causes of

2-D lines in the image.

An amazingly simple learning procedure
(Hinton and Sejnowski, 1983)

• The wake phase (when the
network is perceiving images)
– Settle to thermal equilibrium by

repeatedly updating the hidden
neurons with an image clamped
on the visible neurons.

– For every pair of connected
neurons, if they are both on, add
a small amount to the weight
between them.

• The sleep phase (when the
network is dreaming)
– Settle to thermal equilibrium by

repeatedly updating both the
hidden and the visible neurons.

– For every pair of connected
neurons, if they are both on,
subtract a small amount from the
weight between them.

What this simple learning procedure achieves

• On average, the learning changes the weights so as to increase
the probability that the images generated by the net when it is
dreaming will resemble the images it perceives when it is awake.
– For statisticians and other people who fit models to data: In

expectation, learning follows the gradient of the log likelihood.

• To put it another way: The weights change so that the images that
the network finds plausible (i.e. low energy) resemble the images
it sees when it is awake.
– The learning lowers the energy of interpretations of real data

and raises the energy of the network’s fantasies.

What the process of settling to thermal equilibrium achieves

• Everything that a weight between
two neurons needs to know about
the other weights in order to learn
correctly is conveyed by the
difference between two quantities
that can be measured locally:
– How often the two neurons are

on together when the network is
observing data.

– How often the two neurons are
on together when the network is
dreaming.

• The backpropagation algorithm
requires a backward pass to convey
information about remote weights.
– This backward pass conveys a

different type of signal than the
forward pass.

– This makes it biologically
implausible.

• Boltzmann Machines replace the
forward and backward passes with a
wake and a sleep phase in which
the neurons behave in exactly the
same way. But they are too slow.

Restricted Boltzmann Machines (17 years later!)

• If there are no connections
between hidden neurons, the
wake phase becomes much
simpler:
– Clamp an input on the visible

neurons and update all of the
hidden neurons in parallel.

– The network reaches thermal
equilibrium after a single
parallel update of the hidden
neurons!

• The sleep phase still requires
repeated alternations between
updating all of the hidden
neurons in parallel and updating
all of the visible neurons in
parallel.

• But there is a shortcut called
“contrastive divergence” which
works well in practice.

Contrastive divergence: A very surprising short-cut
Start with a data vector on the visible
neurons.

Then update all the hidden neurons in
parallel.

Then update all the visible neurons in
parallel to get a “reconstruction”.

Then update the hidden neurons again. reconstructiondata

i

j

i

j

time

Measure how often neurons i and j are on together when:
 1. The hidden units are in equilibrium with the data.
 2. The hidden units are in equilibrium with the reconstruction.

Change the weight between i and j in proportion to the difference
between these two measurements.

hidden
neurons

visible
neurons

1 2

A practical application of Restricted Boltzmann Machines

• Netflix combined RBMs with other methods to
improve their predictions of which movies users
would like.

• But with the restriction to a single layer of hidden
neurons it seems impossible to learn a hierarchy of
feature detectors
– Hierarchies of feature detectors are required for

recognizing words in speech or objects in images.
– To learn them we require many layers of hidden

neurons.

Stacking Restricted Boltzmann Machines
Hinton and Salakhutdinov (2006)

• First use an RBM to learn
one layer of hidden features
that capture structure in the
data.

• Then treat the states of the
hidden neurons as data for
training a second RBM.

• Keep doing this to learn as
many layers of features as
desired.

data

hidden data

hidden data

hidden

copy
states

copy
states

First RBM

Second RBM

Third RBM

W1

W2

W3

Using stacked RBMs to initialize backpropagation

• After learning a stack of restricted Boltzmann
machines, use the learned weights of the RBMs
to initialize a feed forward net.

• Add a final layer of output neurons and fine-tune
the whole net using backpropagation.

• This way of initializing the weights of a deep net
makes backpropagation learn much faster.

• It also needs far fewer labeled images because

useful features can be learned without using
labels. The labels just fine-tune the features.

data

hidden

hidden

hidden

class labels

W1

W2

W3

The legacy of Boltzmann Machines

• Between 2006 and 2011, pretraining with a stack of RBMs made deep
learning work better and helped unleash the deep learning revolution.

• Researchers subsequently found other ways of initializing
backpropagation networks so they no longer use stacks of RBMs

• Stacked RBMs were like an enzyme.
– They helped researchers to make the transition to deep learning,

but once this transition was achieved they were no longer needed.

• The idea of using “unlearning” during sleep to avoid the biologically
unrealistic backward pass of backpropagation is still an active
research area.

THE END

	Slide 1: Boltzmann Machines Geoffrey Hinton University of Toronto & Vector Institute
	Slide 2: Hopfield Nets (the version with states of 1 = active and 0 = inactive)
	Slide 3: Settling to an energy minimum
	Slide 4: Settling to an energy minimum
	Slide 5: A neat way to make use of this type of neural network
	Slide 6: A different computational role for Hopfield nets
	Slide 7: Interpreting a line drawing as a 3-D object
	Slide 8: What can we infer about 3-D edges from 2-D lines in an image?
	Slide 9: A thought experiment: Interpreting a line drawing
	Slide 10: Two difficult computational issues
	Slide 11: Noisy networks find better energy minima
	Slide 12: Interpreting a binary image with stochastic binary neurons
	Slide 13: Interpreting a line drawing
	Slide 14: Thermal equilibrium
	Slide 15: Generating a binary image with stochastic binary neurons (letting the network dream)
	Slide 16: The aim of learning in a Boltzmann Machine
	Slide 17: An outrageously optimistic approach
	Slide 18: An amazingly simple learning procedure (Hinton and Sejnowski, 1983)
	Slide 19: What this simple learning procedure achieves
	Slide 20: What the process of settling to thermal equilibrium achieves
	Slide 21: Restricted Boltzmann Machines (17 years later!)
	Slide 22: Contrastive divergence: A very surprising short-cut
	Slide 23: A practical application of Restricted Boltzmann Machines
	Slide 24: Stacking Restricted Boltzmann Machines Hinton and Salakhutdinov (2006)
	Slide 25: Using stacked RBMs to initialize backpropagation
	Slide 26: The legacy of Boltzmann Machines
	Slide 27: THE END

