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Hopfield Nets 
(the version with states of 1 = active and 0 = inactive)

• The neurons are binary and the 
weighted connections are symmetric.

• The global state of the whole network is 
called a “configuration”.

• Each configuration has a goodness 
which is simply the sum of all the 
weights between pairs of active neurons.
– The energy of a configuration is 

minus the goodness.
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Settling to an energy minimum

• The whole point of a Hopfield net is that 
each neuron can easily compute what it 
should do to minimize the global energy 
(energy is badness).

– If the total weighted input coming 
from other active neurons is positive, 
turn on.

 
– If the total weighted input is negative 

turn off.

• If each neuron keeps using this rule, 
the network will settle to a configuration 
that is an energy minimum.
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Settling to an energy minimum

• A Hopfield net can have many 
different energy minima.

• Which minimum it ends up in 
depends on where it starts.
– It can also be affected by the 

order in which the neurons 
are updated.
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A neat way to make use of this type of neural network

• Hopfield (1982) proposed that 
memories could be energy minima 
of a neural net.
– The binary decision rule can 

then be used to “clean up” 
incomplete or corrupted 
memories.

– Start with the corrupted memory 
and settle to an energy 
minimum. 

• Using energy minima to 
represent memories gives a 
content-addressable memory:
– An item can be accessed by 

just knowing part of its 
content.

– Settling to an energy minimum 
then fills in the missing bits.



A different computational role for Hopfield nets

• Instead of using the net to store memories, 
use it to construct interpretations of 
sensory input.
– The input is represented by the states 

of the “visible” neurons.
– The interpretation is represented by the 

states of the “hidden” neurons.

• The energy represents the badness of the 
interpretation. visible neurons

hidden neurons



Interpreting a line drawing as a 3-D object

Interpretation 1 Interpretation 2

Ambiguous line drawing



What can we infer about 3-D edges 
from 2-D lines in an image?

• A 2-D line in an image could have 
been caused by many different 3-D 
edges in the world.

• The information that has been lost in 
the image is the  3-D depth of each 
end of the 2-D line.
– The end of the edge could be 

anywhere on the line of sight. 
– So there is a whole family of 3-D 

edges that all correspond to the 
same 2-D line.

You can only see one of these 
3-D edges at a time because 
they occlude one another.
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A thought experiment: Interpreting a line drawing
• Use one “2-D line” neuron for each 

possible line in the picture.
– Any particular picture only activates a 

few of the line neurons.

• Use one “3-D edge” neuron for each 
possible 3-D edge in the scene.
– Each 2-D line neuron tries to activate 

all the 3-D edge neurons that could 
project to that line. 

– These 3-D edges compete by using 
connections with negative weights

• Make 3-D edges support each other if 
they join in 3-D. 

• Make them strongly support each other 
if they join at right angles in 3-D.
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Two difficult computational issues 

• Using the states of the hidden neurons to 
represent an interpretation of the input 
raises two difficult issues:

– Search: How do we avoid getting 
trapped in poor local minima of the 
energy function?

– Learning: How do we learn the weights 
on the connections to the hidden 
neurons and between the hidden 
neurons?

visible neurons

hidden neurons



Noisy networks find better energy minima

• A Hopfield net always makes decisions 
that reduce the energy.
– This makes it impossible to escape 

from local energy minima.

Stochastic binary neurons use random 
noise to escape from poor minima.

– Noise allows the state of the neuron 
to occasionally go uphill in energy.
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Interpreting a binary image with stochastic binary neurons

• Clamp the binary image on the visible 
neurons and start from a random binary 
state for each of the hidden neurons.

• Pick a hidden neuron, compute the total 
input it is getting given the binary states 
of the other neurons, and update its state.
– If the total input is big and positive it 

nearly always turns on.
– If the total input is big and negative it 

nearly always turns off.
– For smaller total inputs it behaves 

more randomly.

• Keep picking hidden neurons 
and updating their states until 
the whole network 
approaches thermal 
equilibrium (explained later) 

• The states of the hidden units 
are then an interpretation of 
the binary image.
– Low energy interpretations 

will be more probable than 
high energy ones. 



Interpreting a line drawing

2-D lines

3-D edges
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If we can learn the 
right weights on the 
connections, the low 
energy interpretations 
will be sensible 
interpretations.



Thermal equilibrium

• Thermal equilibrium is a difficult concept!
– Reaching thermal equilibrium does 

not mean that the system has settled 
down into the lowest energy 
configuration.

• The thing that settles down is the 
probability distribution over 
configurations.
– This settles to the Boltzmann 

distribution.
– The probability of finding the system 

in a configuration is determined solely 
by the energy of that configuration. 

• There is a nice intuitive way to think 
about thermal equilibrium:
– Imagine a huge ensemble of 

systems that all have exactly the 
same energy function.

– Each system makes its own 
random decisions when it updates 
the states of its neurons

• The probability of a configuration is 
just the fraction of the systems that 
have that configuration.
– After a while these fractions do 

not change.



Generating a binary image with stochastic binary neurons
(letting the network dream)

• Start by picking a random binary state for 
each of the hidden and visible neurons.

• Then pick a hidden or visible neuron, 
compute the total input it is getting given the 
binary states of the other neurons, and 
update its state.
– If the total input is big and positive it 

nearly always turns on.
– If the total input is big and negative it 

nearly always turns off.
– For smaller total inputs it behaves more 

randomly.

• Keep picking hidden or 
visible neurons and 
updating their states 
until the whole network 
approaches thermal 
equilibrium.

 
• The states of the visible 

neurons are then a 
binary image generated 
by the network. 



The aim of learning in a Boltzmann Machine

• The aim of the learning is to make the images that the network 
generates when it is dreaming resemble the images it sees when 
it is perceiving the world.
– If we can achieve this, the states of the hidden neurons will be 

a good way to represent the underlying causes of an image.

• Learning the weights in the network is equivalent to figuring out 
how the hidden neurons should be used to model the structure in 
the images it perceives.
– This seems like a very hard problem.



An outrageously optimistic approach

• Start with a neural net that has a lot of hidden 
neurons with random weights.

• Show it a very large number of images.

• Hope that the network can learn for itself how to 
use the hidden neurons to model the underlying 
causes of images.
– e. g.  3-D edges are the underlying causes of 

2-D lines in the image.



An amazingly simple learning procedure
(Hinton and Sejnowski, 1983)

• The wake phase (when the 
network is perceiving images)
– Settle to thermal equilibrium by 

repeatedly updating the hidden 
neurons with an image clamped 
on the visible neurons.

– For every pair of connected 
neurons, if they are both on, add 
a small amount to the weight 
between them.

• The sleep phase (when the 
network is dreaming)
– Settle to thermal equilibrium by 

repeatedly updating both the 
hidden and the visible neurons.

–  For every pair of connected 
neurons, if they are both on, 
subtract a small amount from the 
weight between them.



What this simple learning procedure achieves

• On average, the learning changes the weights so as to increase 
the probability that the images generated by the net when it is 
dreaming will resemble the images it perceives when it is awake.
– For statisticians and other people who fit models to data: In 

expectation, learning follows the gradient of the log  likelihood.

• To put it another way: The weights change so that the images that 
the network finds plausible (i.e. low energy) resemble the images 
it sees when it is awake. 
– The learning lowers the energy of interpretations of real data 

and raises the energy of the network’s fantasies.



What the process of settling to thermal equilibrium achieves

• Everything that a weight between 
two neurons needs to know about 
the other weights in order to learn 
correctly is conveyed by the 
difference between two quantities 
that can be measured locally:
– How often the two neurons are 

on together when the network is 
observing data.

– How often the two neurons are 
on together when the network is 
dreaming.

• The backpropagation algorithm 
requires a backward pass to convey 
information about remote weights.
– This backward pass conveys a 

different type of signal than the 
forward pass. 

– This makes it biologically 
implausible.

• Boltzmann Machines replace the 
forward and backward passes with a 
wake and a sleep phase in which 
the neurons behave in exactly the 
same way. But they are too slow.



Restricted Boltzmann Machines (17 years later!)

• If there are no connections 
between hidden neurons, the 
wake phase becomes much 
simpler:
– Clamp an input on the visible 

neurons and update all of the 
hidden neurons in parallel. 

– The network reaches thermal 
equilibrium after a single 
parallel update of the hidden 
neurons!

• The sleep phase still requires 
repeated alternations between 
updating all of the hidden 
neurons in parallel and updating 
all of the visible neurons in 
parallel.

• But there is a shortcut called 
“contrastive divergence” which 
works well in practice.



Contrastive divergence: A very surprising short-cut
Start with a data vector on the visible 
neurons.

Then update all the hidden neurons in 
parallel.

Then update all the visible neurons in 
parallel to get a “reconstruction”.

Then update the hidden neurons again. reconstructiondata
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Measure how often neurons i and j are on together when:
    1. The hidden units are in equilibrium with the data. 
    2. The hidden units are in equilibrium with the reconstruction.

Change the weight between i and j in proportion to the difference 
between these two measurements.
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A practical application of Restricted Boltzmann Machines

• Netflix combined RBMs with other methods to 
improve their predictions of which movies users 
would like. 

• But with the restriction to a single layer of hidden 
neurons it seems impossible to learn a hierarchy of 
feature detectors 
– Hierarchies of feature detectors are required for 

recognizing words in speech or objects in images.
– To learn them we require many layers of hidden 

neurons. 



Stacking Restricted Boltzmann Machines
Hinton and Salakhutdinov (2006)

• First use an RBM to learn 
one layer of hidden features 
that capture structure in the 
data.

• Then treat the states of the 
hidden neurons as data for 
training a second RBM.

• Keep doing this to learn as 
many layers of features as 
desired.
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Using stacked RBMs to initialize backpropagation

• After learning a stack of restricted Boltzmann 
machines, use the learned weights of the RBMs 
to initialize a feed forward net.

• Add a final layer of output neurons and fine-tune 
the whole net using backpropagation.

• This way of initializing the weights of a deep net 
makes backpropagation learn much faster.

 
• It also needs far fewer labeled images because 

useful features can be learned without using 
labels. The labels just fine-tune the features.
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The legacy of Boltzmann Machines

• Between 2006 and 2011, pretraining with a stack of RBMs made deep 
learning work better and helped unleash the deep learning revolution.

• Researchers subsequently found other ways of initializing 
backpropagation networks so they no longer use stacks of RBMs

• Stacked RBMs were like an enzyme.
– They helped researchers to make the transition to deep learning, 

but once this transition was achieved they were no longer needed.

• The idea of using “unlearning” during sleep to avoid the biologically 
unrealistic backward pass of backpropagation is still an active 
research area. 



THE  END
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