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Proteins and simulation

Shaw et al, 2009
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Levitt, M., 2001. The birth of computational structural biology. Nature
Structural & Molecular Biology, 8(5), p.392.
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CRYSTAL STRUCTURE OF HUMAN TYROSME-PROTEIN KINASE C-SRE, IN COMPLEX
WITH AMP-PHP
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AlphaFold 1
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Working without
evolutionary information
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After AlphaFold1, we decided to spend E_‘r B - = i- .i’-
time working on structure prediction - '!: b o o W
without evolutionary information b £ O ~,
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highly tuned systems

Covariant attention
to update positions

Embedding

Embedding

Update beliefs about structure




Fusing direct structure
prediction and evolution

AlphaFold1 distograms into the
structure module (~October 2018)

Was around 2 GDT worse than
published AlphaFold1 system, but
strongly suggested end-to-end
structure prediction would work
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Starting over on using
evolutionary data

Taught networks to “fill-in”
evolutionary data as a generalization
of co-evolution (rawBERT models)

Used axial attention as a meaningful
alternation between processes per-
sequence and processing across
sequences

Almost immediately better than our
earlier work because the neural
network operations were meaningfully
aligned to the scientific problem

‘ Convnet ‘
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End-to-end
structure prediction

Structure
model

MSA fill-in




Building physics and biology
into our network blocks
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Confidence measures

in three acts
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Self distillation

Train Model
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Which parts mattered?
All of it

Don’t have time to describe the many
other ideas that contributed:

Data engineering
Recycling

Relative positional coding
Extra MSA evoformer
Weights initialization
Metagenomic data
Template embedding
Gated updates

Violation losses

and many more!

With self-distillation training -
Baseline
Mo templates -

Mo auxiliary distogram head —

Mo raw MSA
(use MSA pairwise frequencies) |

Mo IPA (use direct projection) -

Mo auxiliary masked MSA head

No recycling <

Mo triangles, biasing or gating |
{use axial attention)

Mo end-te-end structure gradients |
(keep auxiliary heads)

No IPA and no recycling

Test set of CASP14 domains
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Test set of PDBE chains
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AlphaFold Protein
Structure Database

In partnership with EMBL-EBI
Predictions across nearly all of
UniProt protein sequences over 200M
predictions

Closes the gap between sequencing
and structure determination

Number of protein structures

AlphaFold DB today
200M+ Structures

AlphaFold DB previously
-1M Structures

Experimental (PDB) today
190k Structures

AlphaFold
Protein Structure Database

pod by epMind and EMBL-EB]
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AlphaFold 2 team
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